QUANTITATIVE EVALUATION OF BIOPHYSICAL MODELS OF THE DIFFUSION WITH IN VIVO DATA BY ASSESSMENT OF THE GENERALIZATION ERROR

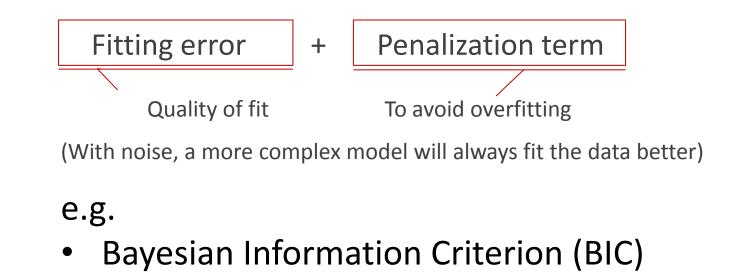
Benoit Scherrer¹, Maxime Taquet¹, Mustafa Sahin¹, Sanjay P. Prabhu¹, and Simon K. Warfield¹

Boston Children's Hospital Radiology

¹ Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA

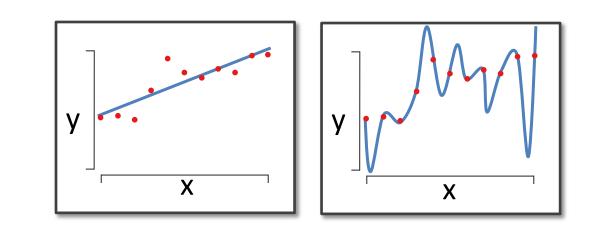
PURPOSE.

- Biophysical models: describe the MR signal formation with a model whose parameters reflect the underlying biophysical mechanisms
- Of crucial interest to characterize and compare tissue properties
 - In disease: in vivo biomarkers for diagnosis, prognosis, tailored intervention and evaluation of success of therapy
 - To study normal brain development
- How to <u>quantitatively</u> evaluate various generative models? An open question



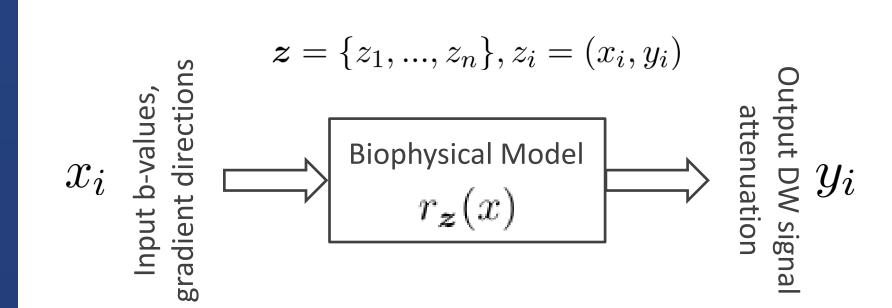
• Aikake Information Criterion (AIC) Asymptotically optimal (Unlike BIC)

• Common approach

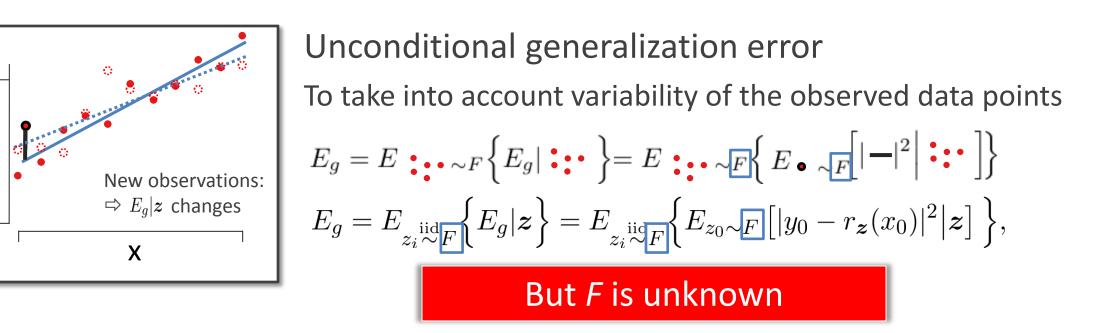


HYPOTHESIS: A BIOPHYSICAL MODEL THAT WELL CAPTURES THE UNDERLYING BIOPHYSICAL MECHANISMS OUGHT TO ACCURATELY PREDICT THE SIGNAL FOR NEW GRADIENT DIRECTIONS AND STRENGTHS.

ASSESSMENT OF THE GENERALIZATION ERROR.

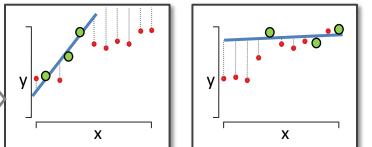


Generalization error conditional on the observed data: Error made for a new hypothetical data point z₀ $z_0 = (x_0, y_0)$ $E_g | \boldsymbol{z} = E_{z_0 \sim F} \left[|y_0 - r_{\boldsymbol{z}}(x_0)|^2 | \boldsymbol{z} \right]$ $E_g | \cdot \cdot = E_{\bullet \sim F} \left[| - |^2 \right] \cdot \cdot \right]$



Estimation of the generalization error

- Leave-one-out: low bias but high variance
- K-fold cross validation: lower variance but higher bias
- Better approach:



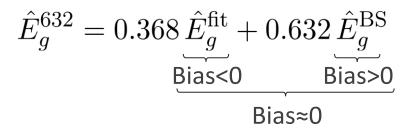
Harvard

MEDICAL SCHOOL

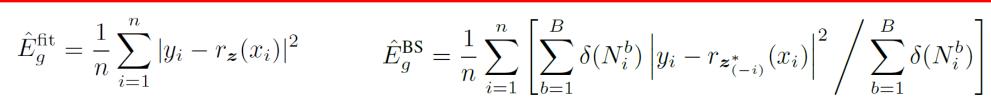
632 Bootstrap estimation of the generalization error

Efron, B., Estimating the Error Rate of a Prediction Rule : Improvement on Cross-Validation, Journal of the American Statistical Association, 1983. 78(382): p. 316-331.

Counteract negative bias of fitting error with positive bias of the bootstrap estimate

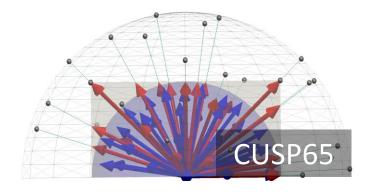


Was shown to have low bias and low variance [Efron1983]

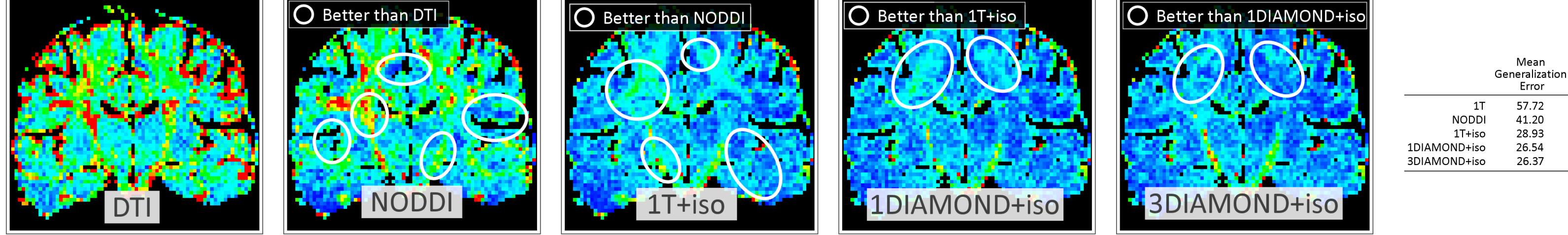


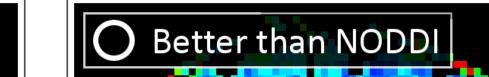
 N_i^b : Number of times sample *i* is used in the training set of the bth bootstrap replicate

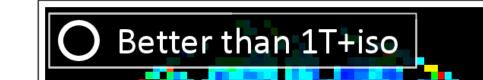
RESULTS



- We evaluated five biophysical model of the diffusion
- CUSP65 acquisition FOV=240mm, matrix-size=128x128, 68 slices, resolution=1.8x1.8x2mm3, TE=78ms, TR=10.1s, ~12min acquisition time Provides a large number of different b-values between 1000s/mm² and 3000s/mm² with low TE and high SNR.
- Generalization error estimated with B=300 bootstrap iterations







NODDI: Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC, NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain, Neuroimage, 61(4), 1000-16, 2012 DIAMOND: Scherrer B., Schwartzman A., Taquet M., Prabhu S.P., Sahin M., Akhondi-Asl A., Warfield S.K., Characterizing the DIstribution of Anisotropic MicrO-structural eNvironments with Diffusion-weighted imaging (DIAMOND)., Proc. of the 16th Int Conf Med Image Comput Assist Interv (MICCAI)(8151), Nagoya, Japan, 2013, 518-526

Fig.a - DTI is the worst predictor of the diffusion signal

Fig.b - NODDI provides a lower generalization error in regions of crossing and close to the cortex because models the fascicle dispersion in each voxel and accounts for freely diffusing water.

Fig.c - 1T+iso better predicts the signal than NODDI. This is likely because a number of parameters are fixed in NODDI (fixed parallel diffusivity, no radial diffusivity)

Fig.d - Accounting for the heterogeneity of each compartment (DIAMOND) slightly improves the generalization error in regions of crossings.

Fig.e - Accounting for each fascicle in each voxel and accounting for the compartment heterogeneity leads to the smallest generalization error

CONCLUSION

- Novel framework to achieve quantitative evaluation of biophysical models of the diffusion with in-vivo data.
- Characterizes how well each model predicts unseen data
- Identify the model that best captures the underlying biophysical mechanisms for the data at hand