
Reliable Selection of the Number of Fascicles
in Diffusion Images by Estimation

of the Generalization Error

Benoit Scherrer*, Maxime Taquet*, Simon K. Warfield

Computational Radiology Laboratory, Department of Radiology
Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA

* These authors contributed equally

Abstract. A number of diffusion models have been proposed to over-
come the limitations of diffusion tensor imaging (DTI) which cannot rep-
resent multiple fascicles with heterogeneous orientations at each voxel.
Among them, generative models such as multi-tensor models, CHARMED
or NODDI represent each fascicle with a parametric model and are of
great interest to characterize and compare white matter properties. How-
ever, the identification of the appropriate model, and particularly the
estimation of the number of fascicles, has proven challenging. In this con-
text, different model selection approaches have been proposed to identify
the number of fascicles at each voxel. Most approaches attempt to max-
imize the quality of fit while penalizing complex models to avoid over-
fitting. However, the choice of a penalization strategy and the trade-off
between penalization and quality of fit are rather arbitrary and produce
highly variable results. In this paper, we propose for the first time to
determine the number of fascicles at each voxel by assessing the general-
ization error. This criterion naturally prevents overfitting by comparing
how the models predict new data not included in the model estimation.
Since the generalization error cannot be directly computed, we propose
to estimate it by the 632 bootstrap technique which has low bias and
low variance. Results on synthetic phantoms and in vivo data show that
our approach performs better than existing techniques, and is robust to
the choice of decision threshold. Together with generative models of the
diffusion signal, this technique will enable accurate identification of the
model complexity at each voxel and accurate assessment of the white
matter characteristics.

1 Introduction

Diffusion tensor imaging (DTI) is well known to be unable to represent the
diffusion signal arising from multiple fascicles crossing in one voxel. Various
approaches have been proposed to overcome this limitation. Among them, gen-
erative models such as multi-tensor models [12, 9], CHARMED [2] or NODDI
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[13] seek to represent the signal contribution from different populations of water
molecules such as the signal contribution from unrestricted diffusion and from
each individual fascicle. These models are based on underlying biological as-
sumptions and are of great interest to characterize and compare white-matter
properties. For example, assessment of the free water diffusion arising from the
extracellular space may be useful for the characterization of edema or inflam-
mation [8]. Modeling of each individual fascicle may be useful to characterize
properties such as the fascicle density, the axonal diameter distribution or the
myelin integrity. This is not feasible with the tensor representation of the signal
in DTI which conflates the signal contribution from multiple sources. However,
accurate estimation of a generative model requires identification of the number of
fascicles present in each voxel, which corresponds to identifying the appropriate
model complexity. This remains a challenging and open problem.

Assessing the number of fascicles at each voxel is a model selection problem.
To date, most approaches select between diffusion models of different complexity
by minimizing the fitting error. Because both the model estimation and assess-
ment is achieved on the same dataset, this favors complex models and may overfit
the data. For this reason, the criterion usually integrates a component penalizing
complex models.

The most common criterion for the selection of generative diffusion models is
the F -test. Alexander et al. [1] compare the spherical harmonic expansion of the
ADC truncated at different orders by means of a series of ANOVA F-Tests. In this
strategy, complex models are penalized by their necessity to significantly decrease
the fitting error when compared to simpler models. Kreher et al. [5] use F -tests
to select the appropriate number of fascicles by observing the variance of the
ADC. Scherrer and Warfield [9] use a similar F -test strategy applied to the signal
residuals rather than the ADC. Besides the F -test, other approaches based on the
quality of fit have been proposed. Behrens et al. [3] used a Bayesian Automatic
Relevance Determination (ARD) approach which starts with the most complex
model and gradually prune the unnecessary variables. However, this was shown
inefficient in tractography and required to manually force the number of fascicles
[6]. The Bayesian Information Criterion (BIC), a weighted sum of the fitting
error and a penalizing term, has been suggested as well but was shown to yield
suboptimal results, even on synthetic data [10].

A more reliable paradigm to avoid overfitting when selecting between models
is to compare how each model performs for new data not included in the model
estimation. This relates to the generalization error (GE). Typically, a model
not complex enough to represent a dataset will have a large GE, and so will
a too complex model which overfits the data. To the best of our knowledge,
minimization of the GE has never been used to determine the number of fascicles
at each voxel. Leave-one-out cross validation follows this paradigm. However, it
does not lead to a consistent estimate of the model [11] and its results are highly
variable. Other cross-validation methods, such as K-fold cross validation, reduce
this variance at the cost of a higher bias. By contrast, the 632 bootstrap method
proposed by Efron [4] reduces this variability while remaining almost unbiased.
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In this paper we use for the first time the 632 bootstrap (B632) method to
determine the number of fascicles present in each voxel from diffusion-weighted
images. Section 2 introduces the methods used, from the definition of the gen-
eralization error (Section 2.1) to the use of its estimate in the selection of the
number of fascicles (Section 2.5). Section 3 presents results on both synthetic
phantoms and in vivo data. Finally, Section 4 discusses the results and concludes.

2 Material and Methods

In this section, we present the generalization error minimization framework and
how it can be utilized to perform model selection and determine the number of
fascicles in each voxel. We start by explaining the fundamental difference between
generalization error and fitting error. We then introduce different methods to
estimate the generalization error, and explain why the 632 bootstrap should
be used in this context. We subsequently provide an expression to estimate the
variance of generalization error. Finally, we detail how these methods are applied
to the problem of selecting the number of fascicles at each voxel.

2.1 Generalization Error and Fitting Error

Let z = {z1, ..., zn} with zi = (xi, yi) be the set of n observed data points, in
which xi are inputs to the model (e.g., the b-values and gradient directions in
diffusion images, see Section 2.5) and yi are outputs (e.g., the signal attenuation
in diffusion images). These data are used to build a generative model rz(x) that
tries to predict the output y from an input x. Ideally, the optimal model would
minimize the generalization error, that is the error made on a new hypothetical
data point z0 = (x0, y0). The generalization error conditional on the observed
data is :

Eg|z = Ez0∼F

[
|y0 − rz(x0)|2

∣∣z] , (1)

where E[.] is the statistical expectation and z0 ∼ F indicates that the expecta-
tion is taken over the new data point that follows the distribution F . To account
for the variability of the observed data points, the unconditional generalization
error can be defined as the expectation of (1) over all z :

Eg,n = E
zi

iid∼F

{
Eg|z

}
= E

zi
iid∼F

{
Ez0∼F

[
|y0 − rz(x0)|2

∣∣z] }, (2)

where the index n indicates that n samples were used to optimize the model rz.
The generalization errors (1) and (2) cannot be directly computed because the
distribution F is unknown. One simple solution would be to estimate F (z) by
the empirical distribution F̂ (z) = 1

n ∀ z ∈ z. For the conditional generalization
error (1), this yields the following estimate:

Êfit
g = Ez0∼F̂

[
|y0 − rz(x0)|2

∣∣z]
=

1

n

n∑
i=1

|yi − rz(xi)|2, (3)
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that is the common fitting error. This estimate is a biased estimate of Eg since
the data z are used both to optimize the parameters of the model rz and to
estimate its error. In particular, in many modeling problem (including multi-
fascicle modeling), it is always possible to find a model that yields Êfit

g = 0
provided that it is complex enough. In the following sections, we will therefore
explore other estimates of Eg and investigate their bias and variance.

2.2 Cross-Validation Estimates

To circumvent the overfitting problem of Êfit
g , one could estimate the model

by omitting one data point in the training sample z and evaluate the model
prediction for this data point. This is the idea behind the leave-one-out cross-
validation (LOOCV) method. Let z(−i) be the training samples without zi. The
resulting estimate of the generalization error reads:

ÊCV
g =

1

n

n∑
i=1

|yi − rz(−i)
(xi)|2. (4)

This is an unbiased estimator of the generalization error Eg,n−1. For large n, the

bias of ÊCV
g as an estimator of Eg,n is positive but low. Its variance, however, is

large, leading to high root mean squared errors, despite the low bias [4].
The variance of the LOOCV can be decreased by keeping more than one

element out of the dataset at each iteration of model training and testing. This
defines K-fold cross-validation methods. They result in unbiased estimates of
Eg,n− n

K
which, however, present an increased bias for the estimation of Eg.

2.3 632 Bootstrap

The bootstrap smoothing method can be used to lower the variance of the cross-
validation estimate [4]. This technique estimates Eg in (2) by providing two
different estimates for the distribution F . The distribution F of z0 is estimated
by the empirical distribution F̂ and the distribution F of z is estimated from
bootstrap samples z∗

(−i) of the empirical distribution F̂(−i) which excludes the
sample zi used for testing. Formally, an expression of the estimator comes by
inverting the order of the expectations in (2) and by subsequently replacing the
distributions F by their estimates:

ÊBS
g =

1

n

n∑
i=1

EF̂(−i)

[
|yi − rz∗

(−i)
(xi)|2

]
.

An equivalent expression of ÊBS
g that is closer to its implementation is:

ÊBS
g =

n∑
i=1

[
B∑

b=1

δ(N b
i )
∣∣∣yi − rz∗

(−i)
(xi)

∣∣∣2/ B∑
b=1

δ(N b
i )

]
, (5)
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where N b
i is the number of times sample i is used in the training set of the bth

bootstrap replicate and δ(x) is the Dirac function. The factor δ(N b
i ) guarantees

that sample i can be used as a testing sample in bootstrap replicate b.
Much like cross-validation, the bootstrap estimate is biased because it relies

on fewer point than the number n of available samples. LOOCV uses (n − 1)
points and its bias is therefore limited. By contrast, ÊBS

g uses, on average, [1−
(1− 1

n )n]n points which is approximately equal to 0.632n for large n. This makes

the bias of ÊBS
g more critical. Efron [4] proposed to counterbalance the positive

bias of ÊBS
g by the negative bias of Êfit

g , introducing the 632 bootstrap estimator:

Ê632
g = 0.368 Êfit

g + 0.632 ÊBS
g . (6)

The coefficients are defined so that the testing samples used to estimate Ê632
g

are at the same average distance from the training sample as would be a random
point drawn directly from F [4]. This estimator has outperformed others in many
applications, mostly when the signal-to-noise ratio is moderate to low [7].

2.4 Standard Error of the Difference Estimator

In many model selection problems including the estimation of the number of fas-
cicles from DWI, model classes are nested: simpler models are particular cases
of complex models. A more complex model can be arbitrarily close to a sim-
pler one and its improvement of the generalization error may be due to chance
alone. To reliably select between the two models, we need to assess whether this
improvement is statistically significant.

Assessing the statistical significance of the difference in generalization error
estimates between a model A and a model B, ∆̂632

AB = Ê632
g,A − Ê632

g,B , requires the
standard error of this difference to be estimated. After rearranging the terms of
∆̂632

AB , taking advantage of the linearity of the expectation, we have:

∆̂632
AB =

0.368

n

n∑
i=1

E
zi

iid∼ F̂

[∣∣yi − rAz (xi)
∣∣2 − ∣∣yi − rBz (xi)

∣∣2]
+

0.632

n

n∑
i=1

E
zi

iid∼ F̂(−i)

[∣∣∣yi − rAz∗
(−i)

(xi)
∣∣∣2 − ∣∣∣yi − rBz∗

(−i)
(xi)

∣∣∣2]

,
0.368

n

n∑
i=1

∆̂fit
AB,i +

0.632

n

n∑
i=1

∆̂BS
AB,i , 0.368 ∆̂fit

AB + 0.632 ∆̂BS
AB (7)

One could estimate the standard error of ∆̂BS
AB as [

∑
i(∆̂

BS
AB,i − ∆̂BS

AB)2/n2]1/2.

This would assume that the ∆̂BS
AB,i are independent, which is not the case. A

better estimate can be obtained by the delta-method-after-bootstrap approach [4].
This method is nonparametric and allows the computation of the standard error
for any statistics that (1) is smooth in the observed data z, (2) is invariant
under permutations of the points zi and, (3) only depends on the empirical
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distribution F̂ . With this method, one can show that the standard error of ∆̂BS
AB

can be estimated by:

ŜE
BS

=

[
n∑

i=1

D̂2
i

]1/2
with D̂i =

(
2 +

1

n− 1

)
∆̂BS

AB,i − ∆̂BS
AB

n
+

∑B
b=1(Nb

i − N̄i)q̄
b∑B

b=1 δ(N
b
i )

and q̄b =

n∑
i=1

δ(Nb
i )

[∣∣∣yi − rAz∗
(−i)

(xi)
∣∣∣2 − ∣∣∣yi − rBz∗

(−i)
(xi)

∣∣∣2] ,
where N̄i is the average N b

i over all B bootstrap replicates. The same approach

cannot be used for the standard error of ∆̂fit
AB because it is a non-smooth function

of the samples z. Efron [4] proposes to estimate the standard error of ∆̂632
AB as:

ŜE
632
≈ ∆̂632

AB

∆̂BS
AB

ŜE
BS
. (8)

To infer whether a model A is better than a model B, the estimate of the differ-
ence between their generalization errors (7) can be compared to the estimate of
the standard error of this difference (8). This is the cornerstone of the selection
of the number of fascicles problem.

2.5 Selection of the Number of Fascicles

The main idea to identify the number of fascicles at each voxel is to progressively
increase the complexity of the model as long as a substantial decrease in the
generalization error can be achieved and to stop when the decrease is no more
significant or when the generalization error starts to increase. More specifically,
the steps for the selection of the number of fascicles are:

1. For each pair of consecutive models (model with m − 1 fascicles and m
fascicles), compute the difference of generalization error estimates using (7).
Let ∆m = ∆̂632

m−1,m be this difference. To use expression (5) for this estimate,
the bootstrap replicates must be identical for all models.

2. Compute the standard error sm of the estimate ∆m using (8).
3. Select the model with mopt fascicles such that:

mopt = inf
{
m
∣∣∆m − θB632sm ≥ 0, ∆m+1 − θB632sm+1 < 0

}
, (9)

where θB632 is the number of standard error above which the difference
should be to be deemed significant. For this expression to hold, we set s0 =
∆0 = ∆M = 0 and sM = 1, where M is the maximum number of fascicles.

We could compare every model to every other one and extend the selection
rule (9) to express the need for a model to be significantly better than all the
simpler ones and not significantly worse than the more complex ones. In our
experiment, we did not observe a difference between the two rules. Rule (9) has
the advantage that it can be applied as the model complexity is progressively
increased, avoiding the need to optimize further complex models at voxels where
a simple model has already been selected.
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Fig. 1. (Left) Synthetic phantom used in our experiment, containing isotropic areas
(blue balls), 1-fascicle areas [A], 2-fascicle areas [B] and three fascicle areas [C]. (Right)
The repartition of the prediction errors, as used in the 632 bootstrap estimator, dis-
criminates the three models, since more complex models may have higher prediction
errors. On the contrary, the fitting error, as used in the F -test model selection, always
decreases when the model complexity increases, due to overfitting.

2.6 Experimental Setup

Our proposed approach for the selection of the number of fascicles could be used
with any generative model of the diffusion signal. In this work, we considered
a multi-fascicle model in which each fascicle is represented by a tensor and the
diffusion of free water is represented by an isotropic tensor. This amounts to
considering the following generative model for the formation of the diffusion
signal S for a b-value b and a gradient direction g:

S = S0

(
f0e

−bDiso +

m∑
i=1

fie
−bgTDig

)
,

where S0 is the signal with no diffusion sensitization applied, Diso = 3.0 ×
10−3mm2/s is the diffusion of free water in the brain at 37oC, fi are the volu-
metric fractions of occupancy associated with each compartment (

∑m
i=0 fi = 1),

m is the number of fascicles of the model and Di is the tensor representing the
fascicle i ∈ [1,m]. Such model requires a DWI acquisition that images multi-
ple non-zero b-values [9]. We employed the CUSP gradient encoding scheme [9]
which achieves short echo time and high SNR. This acquisition was composed
of five b = 0, 30 DW images at b = 1000 and 30 DW images between b = 1000
and b = 3000. The parameters of each model were estimated using a maximum
a posteriori approach. We focused on model complexity ranging from m = 0
(isotropic diffusion) to m = 3 fascicles. We investigated the performance of our
B632 model selection approach with both synthetic phantoms and in vivo data.



8 Selection of the Number of Fascicles in Diffusion

We compared it to the F -test on the signal residuals [9], for which the null
hypothesis is that the fitting error of models with m − 1 and m fascicles are
equivalent by assessing the F -score:

Fm−1,m =
n− 1− |Mm|
|Mm| − |Mm−1|

SSEm−1 − SSEm

SSEm−1
> θF−test, (10)

where n is the number of data, θF−test is the F -score threshold above which the
null hypothesis is rejected, and |Mm| and SSEm are respectively the number
of parameters and the sum of squared errors (fitting error) for a model with m
fascicles. Various synthetic phantoms of size 15× 15 were generated. The tensor
profile Di representing an individual fascicle was chosen to match typical in vivo
data (trace of 2.1×10−3mm2/s and FA of 0.8). We considered regions with 0, 1,
2 and 3 fascicles (Fig. 1). The simulated DWI were corrupted by various Rician-
noise levels. In vivo imaging was achieved on a healthy volunteer using a Siemens
3T Trio scanner with a 32-channel head coil and the following parameters :
FOV=220mm, 68 slices, matrix=128× 128, resolution=1.72× 1.7× 2mm3.

3 Results

3.1 Synthetic Phantom Experiments

Synthetic phantoms offer a ground truth against which results of the model
selection can be compared. We investigated the performance of the B632 and
F -test approaches under four different SNR : 10dB, 20dB, 30dB and 50dB. Both
the B632 and the F -test approaches require determination of a threshold (see
(9) and (10)). We investigated the influence of θF−test by evaluating the F -test
model selection with 3 < θF−test < 150. Similarly, we evaluated the influence of
θB632 by computing the B632 model selection with 0 < θB632 < 13. Note that
θF−test is a threshold on the F -score while θB632 is the number of standard error
above which a model m is considered better than a model m− 1 (see (9)). The
maximum number of bootstrap replicates for B632 was set to 150. We counted
the number of errors between the ground truth and the automatic model selection
results and reported the error rate.

The overall minimum error obtained by choosing the optimal thresholds is
consistently higher with the F -test (Fig. 2a) than with B632 (Fig. 2b). The
table in Fig. 2c summarizes those errors. In practice, the SNR is unknown and
so the choice of threshold cannot depend on it. The overall minimum error rate
are therefore lower bounds for what can actually be achieved in practice. The
increase in error rate compared to this lower bound, due to the choice of a single
threshold, is more dramatical with the F -test than with B632 (Fig. 2c, bottom
rows). In particular, at 10dB, the error rate almost doubles compared to its lower
bound with the F -test, while it increases only by a few percents with B632.

Finally, the evolution of the error rate with the number of bootstrap replicates
assesses the stability of the estimate and allows the definition of a minimum
number of bootstrap replicates required to achieve good performances. Fig. 2d
shows that the error rate becomes stable after approximately 50 replicates.
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Fig. 2. Evaluation on simulated data for various noise levels. (a) For the F -test, the
dependence of the error rate with the threshold θF−test shows that no single threshold
can be used to achieve good performance at all noise levels. (b) The error rate is less
sensitive to the threshold θB632 set on the generalization error estimate. (c) Number of
errors out of the 225 voxels and error rate for optimal thresholds chosen independently
for each SNR (top rows) and jointly for all SNR (bottom rows). B632 leads to fewer
error than the F -test, in both scenarios. The difference is more striking when a single
threshold is used for all SNR. (d) The 632 bootstrap estimate reaches a close to optimal
value after about 50 replicates.

3.2 In-vivo data: robustness to pre-processing

The results on the synthetic phantom suggest that the F -test model selection
is not robust to changes in the characteristics of the image. In particular, if
a threshold is optimized for some SNR, it will yield suboptimal results at an-
other SNR. The acquisition of DWI is usually followed by several steps of pre-
processing before the diffusion model is estimated. Some of these steps aim at
improving the SNR. We may wonder whether the model selection is robust to
these pre-processing step.

As an illustration, we applied the model selection methods on an in-vivo ac-
quisition before and after automatic motion correction based on coregistration of
all the DW images. The acquisition was not corrupted by any significant subject
motion, and therefore this step mostly introduces a smoothing due to the inter-
polation when coregistering the images. Results in Fig. 3 show that the F -test
model selection is strongly affected by this preprocessing step. With a threshold
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With motion correction Without motion correction

632 
Bootstrap

F-Test

F-Score

3 fascicles

2 fascicles
1 fascicle
isotropic

Fig. 3. Maps of the number of fascicles as detected with B632 and F -test for DWI with
and without motion correction. Motion correction mostly introduced interpolation since
no significant motion was present in this scan. B632 yields similar results in both cases,
while the F -test selection fails to detect areas of more than one fascicle. This is due to
the reduced perceived signal to noise ratio after motion correction, which affects the
result of the F -test, as shown by the map of the F -score for the comparison between
one and two-fascicle models.

of θF−test = 15, the map of the number of fascicles after motion correction does
not resemble that before motion correction. In the latter, only one-tensor models
and isotropic diffusion models were selected, while two- and three-tensor mod-
els are detected at many locations after motion correction. To observe two- or
three-tensor models in the second map, one would need to decrease θF−test since
the SNR is lower, which is consistent with the synthetic results of Fig. 2(a). By
contrast, for a constant θB632 = 8, the maps of the number of fascicles detected
with B632 are consistent across both images and follow the traits of the anatomy.

3.3 In vivo data: Cross-Testing Validation

Experiments based on in vivo data cannot rely on any ground truth to assess the
error rates of the methods. To objectively compare the performance of the F -test
and the B632 model selection approaches, we performed a cross-testing analysis.
This procedure consists in repeatedly splitting the dataset into an estimation
set and a testing set. In our experiments, we considered 70% of the data for
estimation and the remaining 30% for testing. Both the model selection and
estimation of the MFM parameters were carried out with the estimation set
while the testing set was used to assess the performance of the two approaches.
The threshold parameters were set to respectively θF−test = 15 and θB632 =
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(a) (b) 

Fig. 4. (a) Comparison of the F -test and B632 model selection approaches using cross-
testing. Difference between the testing error when using F -test model selection and
B632 model selection. It shows that the testing error is significantly lower (positive
values) when using B632. (b) Illustration that B632 and MFM estimation enables
reliable detection of the number of fascicles that matches the known anatomy. (a)
body of the corpus callosum, (b) crossing of the corpus callosum and the cortico-spinal
tracts and (c) centrum semiovale which contains three fascicle orientations.

8. The performance of the approaches was assessed by computing the mean-
square prediction error on the testing set. We repeated the estimation-testing
process 30 times and computed the average testing error. Fig 4 shows that the
testing error with B632 is lower than with F -test. More precisely, a paired t-test
on the differences between the testing errors at each voxel shows that B632 is
significantly better than F -test (p < 10−12) with an mean improvement of 0.56.

4 Discussion and Conclusion

The estimation of the generalization error allows a reliable selection of the op-
timal model. Results on both synthetic and in vivo data show the improved
performance over model selection based on the F -test.

Validating the models by means of an external dataset, as done in Section 3.3,
seems the most objective validation method. Arguably, the generalization error
is therefore what all model selection approaches attempt to minimize. However,
unlike the fitting error, the generalization error cannot be computed and model
selection criteria can be viewed as bypasses to this conceptual limitation. In this
interpretation, the fitting error is, itself, an estimate of the generalization error.
Complexity penalization could then be seen as heuristic methods to correct for
the high bias of this estimate. The 632 bootstrap estimate, on the other hand,
directly estimates the generalization error paying attention to remove as much
bias and unnecessary variance as possible.

Computing the fitting error is a lot faster than computing the 632 bootstrap
which requires several estimations of the model (one for each of the B bootstrap
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replicates). For this reason, model selection and estimation using B632 is about
B times slower. Different approximations could be used to decrease the com-
putational time, such as estimating sticks instead of tensors during the model
selection step and defining a stopping criterion on the number of bootstrap repli-
cates based on the current estimate of the generalization error.

In a future work, we will apply the proposed approach to select between
a broader class of generative diffusion models of the diffusion signal. This will
enable appropriate identification of the model complexity at each voxel and
accurate assessment of the white matter characteristics.
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