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Abstract. Acquisition of a series of anisotropically oversampled acquisi-
tions (so-called anisotropic “snapshots”) and reconstruction in the image
space has recently been proposed to increase the spatial resolution in dif-
fusion weighted imaging (DWI), providing a theoretical 8x acceleration
at equal signal-to-noise ratio (SNR) compared to conventional dense k-
space sampling. However, in most works, each DW image is reconstructed
separately and the fact that the DW images constitute different views of
the same anatomy is ignored. In addition, current approaches are limited
by their inability to reconstruct a high resolution (HR) acquisition from
snapshots with different subsets of diffusion gradients: an isotropic HR
gradient image cannot be reconstructed if one of its anisotropic snap-
shots is missing, for example due to intra-scan motion, even if other
snapshots for this gradient were successfully acquired. In this work, we
propose a novel multi-snapshot DWI reconstruction technique that si-
multaneously achieves HR reconstruction and local tissue model estima-
tion while enabling reconstruction from snapshots containing different
subsets of diffusion gradients, providing increased robustness to patient
motion and potential for acceleration. Our approach is formalized as a
joint probabilistic model with missing observations, from which interac-
tions between missing snapshots, HR reconstruction and a generic tissue
model naturally emerge. We evaluate our approach with synthetic sim-
ulations, simulated multi-snapshot scenario and in vivo multi-snapshot
imaging. We show that 1) our combined approach ultimately provides
both better HR reconstruction and better tissue model estimation and
2) the error in the case of missing snapshots can be quantified. Our novel
multi-snapshot technique will enable improved high spatial characteriza-
tion of the brain connectivity and microstructure in vivo.

Keywords: Diffusion-weighted imaging, high spatial resolution, model-
based, joint model.

1 Introduction

Increasing the spatial resolution in diffusion-weighted magnetic resonance imag-
ing (DW-MRI) enables substantial reduction of the intra-voxel microstructural
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complexity. This has been shown to enable better delineation of the trajectory
of white matter (WM) fascicles [1, 11, 10] and to decrease the impact of partial
voluming, critical in population studies [14] and when imaging brain structures
prone to partial volume effect such as the cerebellum. However, because the SNR
is directly proportional to the voxel volume, reducing the voxel size directly in-
creases the noise of each measurement which strongly impacts the precision
of estimated model parameters. High spatial resolution imaging with constant
SNR can be achieved by repeating the measurements, but requires a quadratic
imaging time increase. Moreover, enhancing the resolution in the slice direction
requires the acquisition of additional slices to cover the same area which also
increases the duration of the scans. To illustrate, reducing the resolution from
2x2x2mm3 to 1x1x1mm3 requires 128 times more imaging time at equal SNR; a
5min. acquisition would thus become a 10.7h. acquisition, which is not realistic.

Enhancing the spatial resolution requires sampling of higher frequencies in
k-space which is very challenging to accomplish with high SNR and short ac-
quisition duration time. Instead of acquiring high frequencies along all the axes
simultaneously, [8] demonstrated that high-resolution (HR) k-space sampling for
a diffusion gradient can be achieved by imaging this diffusion gradient with a se-
ries of anisotropically oversampled acquisitions (so-called “snapshots”) that each
densely samples more frequencies along a limited number of axes (one or two).
Compared to full, dense HR sampling, this multi-snapshot non-Cartesian sam-
pling reduces the spatial encoding burden and provides substantially increased
SNR for each snapshot due to the larger voxel size. In [8], an image generation
model was then employed to describe how the anisotropic low resolution (LR)
snapshots are observations of the unknown, underlying HR isotropic DW images
we aim to recover (forward model), and the corresponding HR DW images recov-
ered by inversing this forward model. A similar technique was later employed in
[6]. A particular strength of this approach is that it only requires a conventional
DW-MRI sequence and is therefore straightforward to implement. When using
three orthogonal snapshots for each diffusion gradient, this effectively enhances
spatial resolution along all the axes (x,y,z) while providing an 8x theoretical
reduction in imaging time compared to conventional sampling at equal SNR [8].

A major limitation in [8, 6] is that each DW image was reconstructed sep-
arately. First, the fact that the DWIs constitute different views of the same
anatomy was ignored. DW images are coupled and this correlation of informa-
tion can be leveraged by introducing in the reconstruction the knowledge of the
local tissue microstructure. Second, an isotropic HR gradient image could not be
recovered if one of its snapshots was missing, for example because of intra-scan
motion, even if other snapshots for this gradient were successfully acquired.

Tobisch et al. [12] built upon the work in [8, 6] and proposed to introduce
an ad-hoc coupling between HR reconstruction and tissue model estimation to
capture the coupling between DW images. They considered the ball-and-stick
tissue model at each voxel, thereby assuming 1) the presence of a single fascicle
in each voxel; 2) the absence of radial diffusivity; and 3) a prefixed axial diffusiv-
ity value constant for the entire brain. This model, however, poorly represents



Accelerated High Spatial Resolution Diffusion-Weighted Imaging 3

in vivo brain tissues. This is critical because, when HR reconstruction and tis-
sue model estimation are coupled, the ability of the tissue model to accurately
predict the DW signal for a diffusion gradient conditions the ultimate HR recon-
struction accuracy. In [12], only results with synthetic simulations were reported,
but no evidence of the technical efficacy of the technique was reported with in
vivo data. More importantly, and similarly to [8, 6], this technique required the
successful acquisition of all the snapshots for a diffusion gradient to reconstruct
the corresponding HR gradient image.

In this work, we propose a novel multi-snapshot DWI reconstruction tech-
nique that simultaneously achieves HR reconstruction and tissue model estima-
tion while enabling reconstruction with missing snapshots. Instead of an ad-hoc
coupling [12], our approach is formalized as a joint probabilistic model with
missing observations, from which interactions between missing snapshots, HR
reconstruction and a generic tissue model naturally emerge. We describe the tis-
sue microstructure at a voxel with a diffusion compartment imaging (DCI) tissue
model that reflects the presence of tissue compartments in each voxel, providing
a model-based description of the signal attenuation for any diffusion gradient ori-
entation and strength. Our novel Simultaneous multi-snapsHot highresOlution
ReconsTruCtion and diffUsion comparTment imaging (SHORTCUT) approach
enables reconstruction from snapshots with different subsets of gradients, pro-
viding increased robustness to patient motion and potential for acceleration.
We evaluate SHORTCUT with synthetic simulations, simulated multi-snapshot
scenario and in vivo multi-snapshot imaging. We investigate the robustness to
missing snapshots. We show that SHORTCUT enables both better reconstruc-
tion of each DW image and better estimation of the tissue parameters.

2 Theory

2.1 The SHORTCUT Framework

We formalize SHORTCUT as a joint probabilistic model synthetized in Fig. 1.
We consider G unique diffusion gradients and a maximum of K snapshots per
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Fig. 1. Graphical representation of the SHORTCUT joint model in which we consider
that some gradients may not be acquired in all snapshots.
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gradient. We denote by yg,s the DW image for the snapshot s of the diffusion
gradient g and by y = (y1,1, . . . ,y1,K , . . . ,yG,1, . . . ,yG,K) the images of the
KG snapshots in which only y = (y1,1, . . . ,y1,K1

, . . . ,yG,1, . . . ,yG,KG
) have

been acquired and (y1,K1+1, . . . ,y1,K , . . . ,yG,KG+1, . . . ,yG,K) are missing. We
denote by x = (x1, . . . ,xG) the unknown HR DW images we aim to recover.
We also consider a generic DCI tissue model dependent on some parameters t
that describes the DW signal attenuation at a voxel i for a diffusion gradient
g by Sg(ti). We aim at recovering 1) the series of missing snapshots; 2) the
series of unknown HR DW images x; 3) the parameters t of the tissue model
at each voxel. The simultaneous estimation of x, t, y is performed according to
the maximum a posteriori principle, by maximizing:

x̂MAP, t̂MAP, ŷMAP = arg max
x,t,y

p(x, t|y) = arg max
x,t,y

p(y|x, t)p(x|t)p(t) . (1)

Factor p(y|x, t). The likelihood p(y|x, t) describes the probability of observing
the snapshots y given a realization of x and t and relates to HR reconstruction.
Assuming conditional independence we can show that:

p(y|x, t) ∝
G∏

g=1

Kg∏
k=1

p(yg,k|xg, t)

K∏
k=Kg+1

p(yg,k|t,xg) .

For acquired DW images (i.e., k ∈ [1,Kg]), we consider that all the information
about yg,k is contained in the HR image xg. The term p(yg,k|xg, t) then describes
how each snapshot constitutes an observation of the unknown x. Similarly to
[8], we consider an image generation model that describes how the LR snapshots
are obtained from the unknown underlying HR volumes. Specifically, for each
diffusion gradient g, we consider that xg goes through geometric and signal
modifying operations to generate the K acquired LR volume: yg,k = Wg,kxg +
εg,k , where yg,k and xg,k are expressed as column vectors by a lexicographical
reordering of the pixels. We consider Wg,k = Dg,kBg,kMg,k where Dg,k is the
down-sampling matrix, Mg,k is the warping matrix that maps the HR volume
x to the LR volume yg,k, Bg,k describes the point spread function (PSF) of
the MRI signal acquisition process and εg,k is the vector of residual noise. We
assume that, conditionally on x, the LR data y are normally distributed around
the unknown HR intensities with variance σ2

A, so that:

∀ k ≤ Kg, p(yg,k|xg, t) =
1

σA

√
2π

exp

(
−||yg,k −Wg,kxg||2

2σ2
A

)
. (2)

For non-acquired images (i.e., k ∈ [Kg+1,K]) the term p(yg,k|t,xg) describes
the agreement between the missing snapshot yg,k and the signal arising from the
DCI model for the unobserved kth snapshot of the gradient g. This term relates
to the missing snapshot recovery using the tissue model. We consider that all the
information about yg,k is contained in t and assume that, conditionally on yg,k,
the intensities of the missing snapshot yg,k are normally distributed around the
intensities of the recovered LR snapshot Wg,kSg(t) with variance σ2

B :

∀ k > Kg, p(yg,k|t,xg) =
1

σB

√
2π

exp

(
−||yg,k −Wg,kSg(t)||2

2σ2
B

)
(3)
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Factor p(x|t). The term p(x|t) describes the agreement between the series
of DW images x and the HR signal modeled by the tissue model and relates to
the DCI model estimation. We consider that the HR image domain V HR is a
regular 3-dimensional (3D) grid and denote by xg,i the ith voxel of the gth HR
DW image xg. We assume that, conditionally on t, the HR DW images x are
normally distributed around the unknown modeled signal Sg(ti) with variance
σ2
C :

p(x|t) =
∏

i∈V HR

G∏
g=1

1

σC

√
2π

exp

(
−||xg,i − Sg(ti)||2

2σ2
C

)
. (4)

Factor p(t) : the term p(t) enables us to incorporate a prior knowledge on the
tissue model parameters. It can be used to introduce a regularization prior that
exploits spatial homogeneity (see Section 2.3).

2.2 SHORTCUT-DTI and SHORTCUT-MTM.

The SHORTCUT approach derived in Section 2.1 is independent of the choice of
tissue model. The simplest solution is to consider a diffusion tensor at each voxel
(DTI). This amounts to modeling the signal by Sg(ti) = S0,i exp

(
−bggTgDigg

)
where S0,i is the non-attenuated signal, Di is the diffusion tensor at voxel i and
bg and gg are the gth b-value and unit-norm diffusion gradient direction. The
parameters to estimate are ti = {S0,i,Di} and the corresponding HR recon-
struction approach referred to as SHORTCUT-DTI.

We also considered a diffusion compartment imaging model that reflects the
presence of tissue compartments in each voxel and captures the non-monoexpo-
nential decay of the diffusion observed in voxels. More precisely, we considered
that each compartment is in slow exchange and modeled the signal arising from
each of them with a diffusion tensor. We considered in each voxel a multi-tensor
model (MTM) [13] with 1) an isotropic diffusion compartment to model the
diffusion of free water; and 2) a series of anisotropic cylindrical diffusion com-
partments to model the combined contribution of hindered and intra-axonal
diffusion arising from each WM fascicle, leading to the attenuation DW signal:

Sg(ti) = S0

[
f0,i exp(−Disobg) +

N
f
i∑

j=1

fj,i exp(−bggT
g Dj,igg)

]
, (5)

where Nf
i is the number of WM fascicles, {fj,i, j = 1, . . . , Nf

i ) are the volumic
fractions of occupancy of each compartment and sum to one, Diso is the diffusiv-
ity of free water and {Dj,i, j = 1, . . . , Nf

i } are tensors describing each compart-

ment. In this case, the parameters to estimate are ti = {S0,i, N
f
i , (fj,i,Dj,i), j =

1, . . . , Nf
i } and we refer to this HR reconstruction approach to as SHORTCUT-

MTM.

2.3 Estimation of the model parameters.

We considered a regularization prior p(t) that exploits spatial homogeneity be-

tween tensors by setting p(t) ∝
∏
i∈V

∏Nf
i

j=1 exp (−αregφ(‖∇ log(Dj,i)‖)) (con-
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sidering Nf
i = 1 for SHORTCUT-DTI), where ‖∇ log(Dj,i)‖ is the norm of the

spatial gradient of Dj,i taken in the log-euclidean space and αreg is a parame-
ter controlling the regularization strength. As in [9], we chose the regularization

function φ(s) =
√

1 + s2/K2
reg, Kreg being a normalization factor, to account

for anisotropic regularization and to preserve sharp contours.
The maximization (1) was achieved by adopting a relaxation approach, by

iteratively maximizing for t, for y and for x, resulting in a novel algorithm that
iteratively achieves 1) DCI tissue model estimation; 2) recovery of the DWIs for
the unobserved snapshots; and 3) HR reconstruction. In this work, we considered
equal constant noise variances, leading to the update rules:

t(n+1) = arg min
t

∑
i∈V HR

[
G∑

g=1

||x(n)
i − Sg(ti)||2 +

G∑
g=1

K∑
k=Kg+1

||y(n)

(g,k)i
−Wg,kSg(ti)||2

+ αreg

N
f
i∑

j=1

√
1 + ‖∇ log(Dj

0,i)‖2/K2
reg

]
(6)

∀ k ∈ [Kg + 1,K] : y
(n+1)
g,k = Wg,kSg(t(n+1)) (7)

∀ g ∈ [1, G] : xg
(n+1) = arg min

x

Kg∑
k=1

||y(n+1)
g,k −Wg,kx||

2
+ ||x− Sg(t(n+1))||

2
(8)

This iterative algorithm is initialized by computing the mean of the observed LR

snapshots. The number Nf
i of fascicle at each voxel was estimated by minimizing

the generalization error [2]. We chose to estimate it only a single time after
initialization of the HR reconstruction to reduce the computational burden. The
steps (6), (7), (8) were achieved until the average root-mean squared difference
(RMSD) between consecutive reconstructed x(n−1) and x(n) is lower than a
threshold θ. The joint HR reconstruction and tissue model reconstruction is
synthesized by the pseudo-code:
n <- 0; Initialize each x

(n=0)
g , g = 1, . . . , G to the mean of the yg,·’s

Compute Nf
i at each voxel from x(0) (model selection)

DO
t(n+1) <- Update tissue model (6)
y(n+1) <- Recover missing snapshots (7)
x(n+1) <- Update HR reconstruction (8)
n <- n+1

WHILE 1/K
∑K

k=1 RMSD(x(n),x(n−1)) > θ
t(n+1) <- Update tissue model

3 Methods

Algorithm settings. SHORTCUT was implemented in C++. The tissue model
estimation was parallelized over the image space and the DW HR reconstruction
was parallelized over the space of diffusion gradients. The model-based HR re-
construction (8) was computed voxelwise by implementing the image generation
model with a functional that maps a HR voxel to the LR space k accounting for
downsampling, warping and sinc PSF. In SHORTCUT-MTM, the tensor repre-
senting each WM fascicle was constrained to be cylindrical. The minimizations



Accelerated High Spatial Resolution Diffusion-Weighted Imaging 7

(8) and (6) were achieved with Bobyqa [7], a derivative-free bound-constrained it-
erative algorithm that computes at each iteration a quadratic approximation for
the objective function. We found that Bobyqa provided lower cost-function min-
ima than using a levenberg-marquardt scheme with estimation of the Jacobian
via finite differences. The model parameters were set to αreg = 0.8, Kreg = 0.01,
Diso = 3× 10−3mm2/s the diffusivity of free water at 37◦ [5] and θ = 0.1.

Numerical phantom. We first evaluated our approach with a numerical phan-
tom for which a noise-free ground truth could be generated. We simulated the
diffusion signal arising from 1000 tensors (FA=0.8) crossing with various angles
(Fig. 2d). We considered a CUSP65 gradient encoding set [9] which achieves
multiple non-zero b-values between 1000s/mm2 and 3000s/mm2 with low echo
time (TE) and therefore high SNR. The DW images were corrupted with Rician
noise (SNR on the b=0s/mm2 image: 25dB). We simulated dense undersam-
pling of k-space by removing half of the high frequencies along a single axis in
Fourier space and by recovering the corresponding image in image space. This
was achieved for the X, Y and Z axes and led to three orthogonal anisotropic
acquisitions with a slice thickness twice the size of the in-plane resolution. We
compared SHORTCUT-DTI and SHORTCUT-MTM to HR reconstruction alone
(DwI with Separate high resolution reCOnstRuction and Diffusion model esti-
mation, DISCORD) [8][6] by assessing the reconstruction accuracy (peak signal-
to-noise ratio, PSNR) with the noise-free DW images. We also investigated the
convergence of SHORTCUT and assessed the estimation accuracy of tissue model
parameters for increasing number of iterations. This was achieved by comparing
the compartment fractional anisotropy (cFA) of the first compartment to that
of the ground truth (0.8).

Simulated multi-snapshot scenario with in vivo data. We considered an
in vivo CUSP65 scan acquired on a Siemens 3T Trio scanner with a 32-channel
head coil and the following parameters : FOV=240mm, matrix=128x128, reso-
lution= 1.88x1.88x2mm3. The Rician-noise corrected SNR in the WM measured

in a b = 0s/mm2 was 296
4.3

√
4−π
2 = 68.8 (33dB). Similarly as above, we simulated

three dense undersamplings of k-space by removing half of the high frequencies
in Fourier space along a single axis for consecutively the axial, sagittal, and
coronal orientations. We compared SHORTCUT-DTI and SHORTCUT-MTM
by computing the PSNR of HR reconstructed DWIs with the original densely
sampled HR DWIs (reference standard). Because the reference standard con-
tains noise, the PSNR does not reflect the true HR reconstruction accuracy of
the underlying anatomy. However, this enables investigation of the impact of the
tissue model on the HR reconstruction. We compared the MTM tissue model es-
timated by SHORTCUT-MTM to the MTM tissue model estimated when using
the original HR acquisition (HR-MTM). We assessed the relative error between
the highest cFA at each voxel between SHORTCUT-MTM and HR-MTM, HR-
MTM being considered as the reference standard. The maximum cFA was used
as a proxy to identify at each voxel the same fascicle between the multi-tensor
fields. We also compared to the relative error when estimating the MTM model
after SHORTCUT-DTI reconstruction (SHORTCUT-DTI-MTM).
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In-vivo multi-snapshot imaging. We acquired three orthogonal CUSP65
scans on a healthy volunteer using a Siemens 3T Trio scanner with a 32-channel
head coil and the following parameters : FOV=220mm, matrix=176x176, resolu-
tion= 1.25x1.25x2mm3. For each orientation, two b = 0s/mm2 images were also
scanned with opposite phase encoding directions and used to correct the images
for geometric and intensity distortions using topup (FSL). The Rician-noise cor-
rected SNR in the WM measured in a b = 0s/mm2 was 26.4 (24.7dB). The aver-
age Rician-noise corrected SNRs in the WM for DW images at b = 1000s/mm2,
b = 1500s/mm2, b = 2000s/mm2 and b = 3000s/mm2 were respectively 14.0
(19.2dB), 12.9 (18.5dB), 10.8 (17.0dB) and 9.4 (15.8dB), above SNR > 3 for
which the Rician distribution can be accurately approximated by a Gaussian dis-
tribution [3]. We achieved HR reconstruction and compared HR reconstruction
alone (DISCORD), SHORTCUT-DTI and SHORTCUT-MTM (computational
time: 20h for full brain reconstruction with a double Intel Xeon E5 processor, 8
cores each).

Robustness to missing snapshots. Finally, we investigated with in vivo data
the impact of missing snapshots. We considered the aforementioned three in vivo
CUSP65 scans and quantified the impact of discarding an increasing number M
of snapshots on the estimated MTM parameters. For each number M ∈ [[1, 120]],
we randomly discarded M DW snapshots among the 195 available and com-
puted SHORTCUT-MTM. This was repeated 100 times. We assessed the aver-
age error between the 100 estimated MTM models and the MTM estimated by
SHORTCUT-MTM with full gradient sampling, considered as reference stan-
dard. This was achieved by assessing in two single fascicle regions 1) the average
relative error of cFA; and 2) the average minimum angle (AMA) error [13].

4 Results

Numerical phantom. Fig. 2a shows that the RMSD between consecutive
DW images reconstructions monotonically decreases toward zero, experimentally
showing the convergence of the algorithm. Fig.2b shows that the average relative
error of cFA gradually decreases with increasing iterations, showing the bene-
fits of the joint SHORTCUT framework. Fig.2c shows that while SHORTCUT-
DTI provides generally a higher PSNR than HR alone (DISCORD) (Fig.2c i),
the over-simplistic DTI tissue model negatively impacts the reconstruction for
some DW images (Fig.2c ii), particularly when the b-value is large. In contrast,
SHORTCUT-MTM consistently provides the best results.

Simulated multi-snapshot scenario with in vivo data. Consistently with
Fig. 2c, Fig. 3a shows that using the DTI tissue model in SHORTCUT substan-
tially impacts the reconstruction, particularly for high b-value images. This was
also verified by comparing MTM model parameters of SHORTCUT-MTM and
SHORTCUT-DTI-MTM to HR-MTM over the entire white matter : the average
relative error of the highest cFA at each voxel was 0.018 ± 7.27 × 10−2 with
SHORTCUT-MTM and 0.031± 1.35× 10−1 with SHORTCUT-DTI-MTM.
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(a) 

(ii) (i) 

b=1000s/mm2 (1000 < b ≤ 3000)s/mm2 DW images 

(d) 

(b) (c)

Fig. 2. Simulations with a synthetic phantom. (a) RMSD between consecutive DW
images with SHORTCUT-MTM (for various b-value DW images). (b) Average Relative
Error of the highest cFA with that of the ground truth. (c) Reconstruction accuracy for
each DW image (PSNR). Highlighted are DWIs for which SHORTCUT-DTI provides
lower PSNR than DISCORD. (d) Illustration of a slice of the numerical phantom.

In-vivo multi-snapshot imaging. Fig. 3b reports the results from in vivo
multi-snapshot imaging. It qualitatively shows that the mean of the three orthog-
onal snapshots for a diffusion gradient is blurred and that the HR reconstruction
alone (DISCORD) is highly impacted by noise. In contrast, incorporation of the
tissue model in SHORTCUT-MTM provides a regularized solution that preserves
edges, qualitatively leading to a better HR reconstruction.

Robustness to missing snapshots. Fig. 4a shows the relative error of cFA in
the cyngulum (ROI1) and in the body of the corpus callosum (ROI2). It shows
that a relative error lower than 3% is ensured when a maximum of 50 gradients
(i.e., 25% of the snapshots) is discarded. Fig. 4b reports the average minimumm
angular error The corresponding maximum angular error is on the order of 3◦.

5 Discussion

We propose a novel algorithm to achieve HR reconstruction from multi-snapshot
DW imaging. Instead of performing the reconstruction of each DW image inde-
pendently [8, 6], we account for the correlations between DW images by incor-
porating the knowledge of a local tissue model. Instead of an ad-hoc coupling
[12], we formalize the simultaneous HR reconstruction and tissue model estima-
tion with a joint probabilistic model from which interactions between the two
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b=1000s/mm2 (1000 < b ≤ 3000)s/mm2 

Mean of LR’s DISCORD SHORTCUT-MTM 

(a) (b)

Fig. 3. (a) Simulated multi-snapshot scenario: impact of the tissue model on the HR

reconstruction. (b) In vivo multi-snapshot imaging: for a b=1000s/mm2 image, quali-

tative evaluation of the mean of the orthogonal snapshots; the HR reconstruction alone

(DISCORD); and SHORTCUT-MTM. (see electronic version for better grayscale visualiza-

tion).

processes naturally emerge. Importantly, and unlike [8, 6, 12], our framework en-
ables reconstruction from snapshots with different subsets of diffusion gradients.
This enables reconstruction from acquisitions in which snapshots are missing,
for example due to corruption by intra-scan motion. This also provides poten-
tial for 1) scan time acceleration for a fixed gradient set or 2) increased q-space
sampling for a fixed acquisition time.

We provided experimental evidence of the convergence of our novel SHORT-
CUT algorithm (Fig.2a) and quantitatively assessed its performance (Fig.2b-c).
Importantly, we demonstrated that incorporating an over-simplistic tissue model
(DTI) substantially impacts the reconstruction (Fig.2c.ii, Fig.3a). This was es-
pecially observed for high b-value images, which is consistent with the known
non-monoexponential decay of the DW signal for high b-values in voxels. We
also showed that with in vivo acquisitions, HR reconstruction alone produces
noisy results (Fig.3b). This is probably due to slight local misalignment of the
orthogonal acquisitions caused by imperfect susceptibility distortion correction.
In contrast, SHORTCUT enables regularization of the reconstruction by intro-
ducing the knowledge of the local microstructure in each voxel, providing better
results. Finally, we quantified the expected relative error when snapshots are not
acquired (e.g., due to motion or to accelerate the acquisition) compared to full
gradient sampling.

In the literature, a popular multi-shot technique is read-out segmented EPI
[4] (rosEPI), which relies on the read-out of k-space with several adjacent seg-
ments and on their recombination in k-space. While rosEPI offers a slight SNR
increase due to the shorter read-out of each segment (leading to lower TE),
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Fig. 4.
Comparison of SHORTCUT-MTM with an increasing number of missing snapshots

to SHORTCUT-MTM with full sampling (reference standard). Are shown the average
relative error of cFA (a) and the average angular error (b) in the two single fascicle

regions depicted in (c). ROI1 is selected in the cyngulum while ROI2 is selected in the
body of the corpus callosum. (c) also shows that the MTM orientations matches the
known orientations of WM fascicles, including three fascicles in the corona radiata.

rosEPI does not benefit from increased SNR due to the larger voxel size. More-
over, phase inconsistencies in k-space resulting from even minimal physiological
motion during the application of the gradients remain challenging to correct. In
contrast, our multi-snapshot high resolution technique provides, for each snap-
shot, a substantial SNR boost due to the larger voxel size and performs re-
construction in the image space. Similarly to rosEPI, reduced distortion can be
obtained by using snapshots with low resolution in the phase encoding direction,
reducing the number of phase encodes and, in the aggregate, the amount of T2*
relaxation-induced distortion.

It is important to note that, with multi-snapshot imaging and reconstruction
in the image space, employing at least three orthogonal scans is necessary to
ultimately recover high frequencies along all the dimensions. However, with only
three scans, the frequencies in the corners of k-space are missing. In future work,
we will evaluate the impact of this approximation by experimentally assessing the
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effective spatial resolution by imaging a physical phantom. We will also evaluate
the impact of 1) non-Gaussian noise modeling when using high SNR DW data
(SNR on b = 0s/mm2 ≥ 25dB); and 2) various PSF modeling strategies.
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