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ABSTRACT

Multi-tensor models have been proposed to assess multiple
fiber orientations but are known to be numerically challeng-
ing. We show that the estimation cannot be performed with
a single-shell HARDI acquisition because the fitting proce-
dure leads to an infinite number of solutions ; multiple-shell
HARDI acquisitions are required. Additionally, we propose
a new log-euclidean constrained two-tensor model capable of
assessing crossing fibers configurations with a relative lim-
ited number of DW acquisitions. We provide numerical ex-
periments with this model to verify experimentally the neces-
sity of multiple-shell HARDI acquisitions schemes for multi-
tensor models.

Index Terms— Diffusion MRI, two-tensor model, log-
euclidean, b-value

1. INTRODUCTION

Diffusion tensor imaging (DTI) [1] has been widely used to
describe the three-dimensional nature of anisotropic diffusion
in the human brain from diffusion measurements in several
directions. However, its underlying homogeneous Gaussian
diffusion assumption is well known to be inappropriate for
assessing multiple fibers orientations. High angular resolu-
tion diffusion imaging (HARDI) acquisition schemes com-
bined with specific algorithms have been proposed to over-
come this limitation. They all share the idea of introducing
many gradient encoding directions with one gradient strength
(single-shell HARDI, one b-value) or several (multiple-shell
HARDI, multiple b-values). A wide number of HARDI ap-
proaches have been proposed which generally aim at estimat-
ing an approximate of the underlying fiber orientation dis-
tribution: diffusion spectrum imaging (DSI), Q-ball imaging
(QBI), spherical decomposition, generalized diffusion tensor
imaging (GDTI), ... If these approaches are promising they
generally require a large amount of data to be acquired (typi-
cally more than 100 images, up to 500), limiting their use for
practical clinical applications. Lower spatial resolution ac-
quisitions can be considered to reduce the imaging time but
at the expense of the complexity of each voxel, which may
not be desirable. Additionally, non-parametric models such

as DSI or QBI are limited by the need of the narrow pulse
approximation and the need to truncate the Fourier represen-
tation, leading to quantization artifacts [2]. In contrast, para-
metric models require less imaging time as they describe a
predetermined model of diffusion rather than an arbitrary one.
Particularly, it is generally admitted that the fiber orientation
distribution of an individual fiber bundle is well represented
by a single Gaussian. We can expect voxels containing mul-
tiple fiber orientations to be well represented by a mixture
of Gaussians. Following that idea, multi-tensor approaches
[3, 4, 5, 6] model the diffusion signal by fitting a simple fi-
nite mixture of Gaussians (generally two). Having a very low
number of parameters to estimate, only a limited number of
diffusion images should be necessary. These models are how-
ever known to be numerically challenging, experiencing dif-
ficulties for their fitting.

In this paper we demonstrate that multi-tensor models
cannot be properly estimated with a single-shell HARDI ac-
quisition because the model parameters are collinear, leading
to an infinite number of solutions. In contrast, multiple-shell
HARDI acquisitions makes the fitting to be better determined,
leading theoretically to a unique solution. Additionally we
propose a new constrained two-tensor model in the log-
euclidean framework, able to perform the estimation with
a relative limited number of DW acquisitions. Numerical
experiments with this model are provided to demonstrate the
necessity of multiple-shell HARDI acquisitions schemes for
multi-tensor models.

2. THEORY

Diffusion signal modeling. The single tensor model con-
sider that the local diffusion in a voxel can be modeled with a
3D Gaussian distribution, whose covariance matrix is propor-
tional to the 3×3 diffusion tensor D. The resulting diffusion-
weighted signal Sk along a unit-gradient direction gk is clas-
sically modeled as:

Sk(D) = S0e
−bkgTkDgk ,

where S0 is the signal with no diffusion gradients applied and
bk is the b-value for the gradient direction k. In two-tensor



models, or so called multi-compartment models [3], we con-
sider that each voxel can be divided in a discrete number of
homogeneous subregions in which the diffusion is Gaussian,
i.e. fully described by a tensor, and that these subregions are
in slow exchange. Let consider a model with two diffusion
tensors D = (D1,D2). The resulting diffusion-weighted sig-
nal Sk along a gradient direction gk can be modeled as the
finite mixture of Gaussians:

Sk(D, f) = S0(f1e
−bkgTkD1gk + f2e

−bkgTkD2gk) (1)

where f = (f1, f2) describes the volume fractions of each
compartment (fj ∈ [0, 1]) and verify

∑2
i=0 fi = 1.

Why multiple b-values are required. We now demonstrate
that the tensors D and the fractions f cannot be determined
using a single shell HARDI acquisition. Let consider a con-
stant b-value b, and let yk be the measured signal for the
direction k. D and f are generally estimated by a least-square
approach by considering the K gradients directions:

(
D̂, f̂

)
= arg min

D,f

K∑
k=1

[Sk(D, f)− yk]2 (2)

If (D̂, f̂) is a solution of (2), then for any α, β > 0:

Sk
(
D̂, f̂

)
= S0(

α

α
f̂1e

−bgTk D̂1gk +
β

β
f̂2e

−bgTk D̂2gk )

= S0

(
αf̂1e

−bgTk D̂1gk− logα + βf̂2e
−bgTk D̂2gk− log β

)
with f̂2 = 1 − f̂1. Considering gTk gk = 1, we have logα =
gTk (logα I3×3)gk and:

Sk
(
D̂, f̂

)
= S0(

αf̂1e
−bgTk (D̂1+

logα
b

I3×3)gk + β(1− f̂1)e−bg
T
k (D̂2+

log β
b

I3×3)gk
)

We can show that for β = 1−αf̂1
1−f̂1

and α ∈ ]0, 1[ we have

(1) αf̂1 + β(1 − f̂1) = 1, (2) αf̂1 ≤ 1, (3) β(1 − f̂1) ≤ 1
and (4) β > 0. We can see that when all images are acquired
with a single b-value, then if (f̂1, 1 − f̂1) and (D̂1, D̂2)

is a solution of (2), for any 0 < α < 1, (αf̂1, 1 − αf̂1)

and

(
D̂1 + logα

b I3×3, D̂2 +
log(

1−αf̂1
1−f̂1

)

b I3×3

)
is a solu-

tion of (2) as well : there is an infinite number of solu-
tions. Additionally, non-degenerate tensors are obtained for

e−bλ
min
1 < α < 1−(1−f̂1)e−bλ

min
2

f̂1
, λmin

1 and λmin
2 being re-

spectively the minimum eigenvalues of D̂1 and D̂2. A single
b-value conflates the tensor size indicated by the magnitude
of its eigenvalues and the partial volume fractions. In con-
trast, the use of multiple b-values enables a unique solution
to be found and disambiguates the estimation of f and D.
This allows measurements of the partial volume occupancy
of each tensor in addition to the tensor estimation.

Constrained two-tensor model in a log-euclidean frame-
work. We now propose an original two-tensor estimation
framework to evaluate experimentally the need of multiple
b-values for the estimation of two-tensor models. Differ-
ent (multi-) tensor estimation schemes have been proposed
in the literature. Particularly, care must be taken to ensure
the positive-definitive property of the Dj and then avoid de-
generate tensors with null or negative eigenvalues. Solutions
include the Cholesky parameterization of the diffusion tensor,
or Bayesian approaches with priors on the eigenvalues [6, 5].
An other elegant approach is to consider symmetric positive
definite matrixes as elements of a Riemannian manifold with
a particular affine-invariant metric [7], with which null and
negative eigenvalues are at an infinite distance. Such a metric
provides excellent theoretical properties but at a extremely
high computational cost. The log-euclidean approach is a
computationally efficient close approximation and has been
successfully applied to one-tensor estimation [8]. To our
knowledge it has never been used in multi-tensor models.
Additionally, following the model of [4], we introduce a
geometrical constraint in the modeling: D1 and D2 are
constrained to lie in the plane defined by the two biggest
eigenvalues of the one-tensor solution, reducing the number
of free parameters. However, contrary to [4], we do not con-
strain the principal diffusivity magnitude to be the same in
both tracts. More precisely, if D1T is the one-tensor solution,
i.e.:

D1T = VTΛV with Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 , λ1 ≥ λ2 ≥ λ3,

then the jth tensor can be expressed as:

Dj = VT D̃j V with D̃j =

 D̃j,a D̃j,b 0

D̃j,b D̃j,c 0
0 0 λ3


The problem is then recast into a 2D minimization problem:
we look to estimate two 2D tensors D̃j subsequently rotated
by V, leading to the estimation of only three parameters per
tensor. We parameterize each tensor D̃j by its logarithm:
L̃ = (L̃1, L̃2) = (log(D̃1), log(D̃2)). The predicted signal
for a gradient direction k can then be modeled as (replacing
Sk(L̃, f) by Sk for simplification concerns):

Sk = S0

2∑
j=1

fje
−bk(Vgk)

T exp(L̃j)(Vgk)

To ensure properly bounded and normalized fractions, we pa-
rameterize them trough a softmax transformation [3]: fj(η) =

exp ηj∑
l exp ηl

, with η = (ηl ∈ IR, l = 1, . . . , 2). The estimation of

L̃ and η is performed via a least-square criteria (see Equation
2) using a conjugate gradient method, the Fletcher-Reeves-
Polak-Ribiere algorithm. It raises the problem of the initial
position. Considering the one tensor solution D1T, we pro-
pose to initialize D̃

(0)
1 and D̃

(0)
2 (and consequently L̃

(0)
1 and
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Fig. 1. Generated phantom of two fiber bundles crossing
at 70◦ (a). Estimation from different simulated acquisi-
tions: (b): one shell, D1=90 directions, b1=1000s/mm2 ; (c):
two shells, Dj=(30, 15), bj=(1000, 7000) ; (d): two shells,
Dj=(45, 45), bj=(1000, 7000). Remark: double-tensors outside of the

crossing region in (b,c,d) may appear as a single tensor because they are very similar.

L̃
(0)
2 ) according to a rotation of angle φ in the plane formed

by (λ1, λ2) composed with a shrink of λ2:

D̃
(0)
j =

 cos(±φ) 1
4
sin(±φ) 0

−sin(±φ) 1
4
cos(±φ) 0

0 0 λ3


We choose φ = λ2

λ1

π
4 so that when λ1 = λ2 the initial D̃j’s

describe two tensors whose principal diffusivities are perpen-
dicular. In contrast, a one tensor solution with λ1 >> λ2
is likely to represent an individual fiber bundle, and the ini-
tial D̃j’s are two tensors with almost parallel principal dif-
fusivities. η is initialized to η = (1, 1), leading to f(η) =
(0.5, 0.5). Finally, the differentiation in the log-euclidean
framework needed by the conjugate gradient algorithm gives:

∂

∂ηj
(·) = 2S0

K∑
k=1

(Sk − yk)

(
2∑
l=1

∂fl(η)

∂ηj
e−bkg̃k

T exp(L̃l)g̃k

)

∇L̃j
(·) = −2S0fj(η)

K∑
k=1

(Sk − yk)bke
−bkg̃kT exp(L̃j)g̃k

∂g̃kg̃kT exp(−L̃j),

with g̃k = Vgk (see [8] for practical implementation of
∂g̃kg̃kT exp(−L̃j)). After convergence, the final tensors are

obtained by D̂j = VT exp(
̂̃
Lj)V .

3. EVALUATION

Simulations. We experimentally evaluated the need of
multiple-shell HARDI acquisitions with our log-euclidean

constrained two-tensor approach. The evaluation was cur-
rently performed with simulations. We generated a phantom
representing two fiber bundles crossing with an angle of 70◦

(see Fig. 1.a). The typical tensor profile representing an indi-
vidual fiber bundle was estimated from a real DWI acquisition
by averaging the eigenvalues of voxels with highest FA, lead-
ing to (λ1, λ2, λ3) = (5.119× 10−4, 2.178× 10−4, 1.071×
10−4). In the crossing region, the fractions f were set to
(f1, f2) = (0.7, 0.3). We simulated the diffusion-weighted
signal (see Equation (1)), corrupted by a Rician-noise (from
two N (0, σ = 1)), for different acquisition schemes. We
used a b-value of b1 = 1000s/mm2 for the first shell, which
is a generally admitted optimal b-value in the adult human
brain. Different b-values for the other shells were considered
when using multiple-shell schemes.
Results. Fig. 1.b shows that with a single b-value, even a high
angular resolution acquisition (D1=90 directions) do not pro-
vide a satisfying result. In comparison, an acquisition with a
total of only 45 directions with one low and one high b-value
provides better results (Fig. 1.c), which are improved by con-
sidering 45 directions with two b-values each (Fig. 1.d). We
then quantitatively evaluated the accuracy of both the tensors
estimates and the fractions estimates depending on the value
of b2 for three different two-shells HARDI schemes (Fig. 2.a
and 2.b). Each two-tensor D̂ was compared to the ground-
truth Dgt in term of average minimum log-euclidean distance
(AMD): ∆err = 1

2

∑2
j=1 mink || log(D̂j) − log(Dgt

k )||. Fig.
2.a reports the mean ∆err over all tensors of the phantom.
The fractions were compared to the ground-truth by consider-
ing their average absolute difference (AAD) over the crossing
region (Fig. 2.b). Figs. 2.a and 2.b show that the combination
of a low and a high b-value helps to stabilize the estimation
of both the tensors and the fractions. Additionally, HARDI
schemes such as (D1=60,D2=30) or (D1=45,D2=45) should
be preferred to (D1=75,D2=15). Figs. 2.c and 2.d show
that for a same number of directions, multiple-shells HARDI
schemes always provides better results than a single-shell
scheme, which is consistent with our demonstration in Sec-
tion 2. For a very low number of directions (45), the tensor
are in average surprisingly quite well estimated compared to
the fractions. It is likely due to a good estimation outside of
the crossing region but less good inside (see also Fig. 1.c).

4. DISCUSSION

In this paper, we (1) have shown theoretically that multi-
tensor approaches require at least two b-value acquisitions for
their estimations and (2) have proposed a log-euclidean con-
strained two-tensor model to assess multiple fiber orientations
from a relative limited number of DW acquisitions.

In the literature, a number of approaches fit a multi-tensor
model with only one b-value [3, 6, 4]. Other approaches use
several b-values [5] but, to our knowledge, do not describe the
theoretical reasons to do so. We have shown that with only
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Fig. 2. Evaluation of the tensors (a) and the fractions (b) estimated from simulated two-shells acquisitions in function of b2
(b1 = 1000s/mm2) for three different acquisition schemes of 90 directions each (Dj={(45, 45), (60, 30), (75, 15)}

). Fig (c) and (d):
Evaluation with different simulated acquisitions composed of a total of 90, 60 or 45 directions (1S-90: 1 shell, b1=1000, D1=90 ; 2S-

60,15,15: 3 shells, bj=(1000, 4000, 7000), Dj=(60, 15, 15) ; 2S-60,30: 2 shells, bj=(1000, 7000), Dj=(60, 30) ; 2S-45,45: 2 shells, bj=(1000, 7000), Dj=(45, 45) ;

3S-30,30,30: 3 shells, bj=(1000, 4000, 7000),Dj=(30, 30, 30) ; 1S-60: 1 shell, b1=1000,D1=60 ; 2S-45,15: 2 shells, b1=(1000, 7000),Dj=(45, 15) ; 2S-30,30: 2 shells,

b1=(1000, 7000),Dj=(30, 30) ; 1S-45: 1 shell, b1=1000,D1=45 ; 2S-30,15: 2 shells, b1=(1000, 7000),Dj=(30, 15)) .

one b-value, the magnitude of the estimated tensors eigen-
values and the estimated fractions are melded, which is not
a desirable property: in this situation, a fiber bundle with a
uniform D1 across its entire length may appear to grow and
shrink as it passes through voxels and experiences different
partial volume effects. The introduction of constraint in the
modeling cannot resolve the ambiguity because the problem
comes from the collinearity in the parameters. Only the use
of multiple-shell HARDI acquisitions allows to disambiguate
the estimation of the tensors and the fractions. This was ex-
perimentally verified with simulations by using our proposed
log-euclidean constrained two-tensor model. It appears that
combining low and high b-values provides better results, pos-
sibly due to numerical reasons. Such situations probably re-
duce the number of local minima during the model fitting. We
show that two tensors configurations can be estimated from a
relative low number of DW images with this model, and thus
clinically compatible scan times may be reached. An interest-
ing refinement could be to add an isotropic term to the mixture
of Gaussian to account for an isotropic diffusion compartment
[5, 6]. Future works should concern a fully characterization
of our new constrained log-euclidean two-tensor model, in-
cluding (1) the acquisition of real human brain multiple-shell
HARDI data and (2) an investigation of the tradeoff between
the quality of the tensor fitting, the imaging time, the noise
level, and the angular resolution detection of crossing fibers.
Model selection may also be considered to choose between
the one-tensor and the two-tensor solutions for each voxel.
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