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ABSTRACT

Robust estimation of diffusion models in presence of local
artefacts that corrupt only a subset of gradient directions is
essential in diffusion weighted imaging to accurately assess
the brain connectivity and white-matter characteristics. In this
work we investigate the estimation of diffusion tensors in the
Random Sample Consensus (RANSAC) paradigm. First, we
show that it enables robust estimation to artefacts such as pa-
tient motion during the images’ acquisition and local signal
loss due to the vibration artefact. Second, it provides us with
a set containing only the reliable gradient directions at each
voxel. This may enable robust but computationally efficient
estimation of more complicated diffusion models by consid-
ering only the gradient directions identified as reliable at each
voxel from the RANSAC tensor estimation.

Index Terms— Diffusion Weighted Imaging, Artefact de-
tection, Robust Estimation, RANSAC

1. INTRODUCTION

Robust estimation to local artefacts that potentially corrupts
only a subset of gradient directions is essential in diffusion
weighted imaging. Diffusion-weighted imaging (DWI) relies
on the acquisition of multiple DW-images and generally re-
quires long duration acquisitions. This makes DWI particu-
larly vulnerable to patient motion, especially with uncooper-
ative or unsedated pediatric subjects. Rigid registration can
be employed to correct for head motion when the motion oc-
curs between the acquisition of consecutive gradient images
[1]. However, patient motion during the acquisition of a DW-
image generally leads to artefacts that may corrupt only a sub-
set of slices and a subset of gradient images. Local identifica-
tion of the corrupted voxels should be preferred to the exclu-
sion of entire volumes. DW-images can also be corrupted by
the vibration artefact, which is caused by mechanical vibra-
tions of the patient table due to the low frequency switching
of the gradient coils during the diffusion encoding [2]. Partic-
ularly, it occurs when using partial Fourier encoding or acqui-
sitions with a short repetition time (TR). It especially affects
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gradient directions which have a strong left-right component
and is characterized by a severe local signal loss, generally in
the parietal lobes, leading to local regions with a strong red
component in the tensor color-FA image (see Fig.1).

Robust estimation to these artefacts is essential to ensure
an accurate estimation of the diffusion model. The least-
square criterion is computationally efficient and widely used
when estimating a diffusion model such as the diffusion ten-
sor. However, it is well known to be highly sensitive to out-
liers. In presence of artefacts, it can lead to estimates primar-
ily driven by outliers which have large residuals. In contrast,
Mangin et al. [3] have employed the M-estimator approach
to estimate tensors. This is based on minimizing the sum of
symmetric positive-definite function ρ(rj) of the residuals rj ,
with a unique minimum at rj = 0. Choosing ρ(rj) = r2j
corresponds to the least-square criterion. In the M-estimators
literature, ρ(rj) is chosen so that it cancels out the influence
of large residuals rj . Multiple choices for ρ(rj) have been
proposed: Huber M-estimator, Geman-McClure M-estimator,
and other. Chang et al. [4] have proposed the Robust EStima-
tion of Tensors by Outlier Rejection (RESTORE) approach.
It is based on a similar iteratively weighted least square ap-
proach using the Geman-McClure M-estimator. However, in
this approach, the M-estimators are used to identify the po-
tential outliers, which are then excluded for the actual tensor
estimation.

In contrast, the RANdom SAmple Consensus (RANSAC)
paradigm is a robust estimation procedure that does not make
any assumption on the model to estimate, and can be eas-
ily used with any model. It was first introduced by [5] as a
method to estimate the parameters of a model in presence of
a large number of outliers. It is composed of three steps that
are repeated in an iterative fashion: 1) selection of a random
subset of data from which an initial model is estimated and 2)
enlargement of the subset with the data consistent with the es-
timated model and 3) assessment of the overall quality of the
enlarged subset. The RANSAC procedure has been widely
used in the computer vision community. It is known to be
particularly robust in presence of many outliers, and is of par-
ticular interest in DWI and especially pediatric DWI.

In this work we propose to use the RANSAC paradigm
to estimate tensors in DWI, and to determine the optimal set



containing the most reliable diffusion-gradients at each voxel.
We qualitatively show that the estimated tensors are more ro-
bust to local artefacts compared to RESTORE [4], particularly
to the vibration artefact. Importantly, the accurate identifica-
tion of the reliable diffusion gradients at each voxel may be of
great interest for the estimation of a more complicated diffu-
sion model such as the multi-tensor model, spherical decon-
volution, Q-Ball, and other. It may enable computationally
efficient and robust estimation of such models, by consider-
ing only the gradient directions identified by the RANSAC
tensor estimate.

2. MATERIAL AND METHODS

2.1. LLS Tensor Estimation with the RANSAC paradigm

We consider in this work the linear least square (LLS) esti-
mation of tensors in the RANSAC paradigm. The estimation
with RANSAC is achieved via three steps that are repeatedK
times in an iterative fashion. Let g be the set of all gradient
directions.

First, at each voxel i, an initial tensor T̃i is estimated with
LLS using only a small random subset of N init gradient di-
rections: g̃ = {g1, . . . ,gNinit}.

Second, the subset g̃ is enlarged with the other gradients
g′
j not in g̃ that are consistent with the estimated model T̃i.

The consistency is evaluated by comparing the measured sig-
nal Si(g

′
j) for the gradient direction j to the predicted sig-

nal S̃i(T̃i,g
′
j) = S0 exp(−bjg

′T
j T̃ig

′
j) by T̃i, with S0 be-

ing the signal with no diffusion applied and bj the b-value
for the gradient j. We enlarge g̃ with all gradients for which
the absolute prediction error is smaller than a given thresh-
old: |Si(g

′
j)− S̃i(T̃i,g

′
j)| < θi. The corresponding enlarged

gradient set c̃si is called the consensus set. Third, the over-
all quality of the consensus set c̃si is assessed by estimating
a new tensor T̃i

′
using the gradients in c̃si, and by assessing

the corresponding mean squared fitting error:

MSE(c̃si) =
1

size(c̃si)

∑
gg∈c̃si

(
Si(gg)− S̃i(T̃i

′
,gg)

)2
.

The consensus set c̃si that leads to the lowest MSE corre-
sponds to the set containing the most reliable gradient direc-
tions at each voxel i.

Estimation of the threshold θi. The value of the thresh-
old θi at each voxel i is determined from the data. More pre-
cisely, θi is determined by fitting an initial tensor T (0)

i using
all the available gradient directions g, and by assessing the
median prediction error of T (0)

i among each gradient direc-
tion:

θi = α×median
{
|Si(gg)− S̃i(T

(0)
i ,gg)|

}
gg∈g

We considered the median of the prediction errors because it
is known to be more robust to outliers than the mean. This
provides us with an estimate of the typical prediction error
at each voxel for a given DWI dataset, which can be used to
later determine if a given gradient direction is consistent with
a model.

Determination of the number of iterations K. The
total number of iterations K can be based upon the expected
number of trials required to select a subset of n reliable gra-
dient directions [5]. With p being the probability that at least
one subset contains only reliable gradients after K iterations,
and w being the probability that a randomly chosen gradient
is reliable, then (1 − wn)K is the probability that all K sub-
sets of n gradients have at least one outlier after K iterations.
This is equal to 1 − p. Consequently, given p, w and n, the
number of iterations K can be determined by:

K =
log(1− p)
log(1− wn)

.

For example, considering that a voxel location i does not con-
tain any artefact for w = 75% of the gradient directions, and
that n = 20 unique gradient directions are sufficient to cor-
rectly estimate the tensor anisotropy [6], a consensus set con-
taining only reliable gradient directions will be selected after
K = 943 iterations with a probability of p = 0.95.

Pseudo-code: The RANSAC tensor estimation proce-
dure described in this paper is synthesized by the following
pseudo-code:

T 0<-Estimate tensor field with all the gradients

Estimate the thresholds θi for each voxel

FOR EACH voxel i
FOR iteration k FROM 1 TO K

g̃ <- random subset of N init gradients

T̃i <- Estimate tensor field from g̃

c̃si <- g̃

FOR EACH g′
j not in g̃

IF signal of g′
j consistent with tensor T̃i

Add g′
j to c̃si

ENDIF
ENDFOR

T̃i
′
<- Re-estimate tensor i with c̃si

Ri <- Evaluate the mean square fitting error

IF Lowest Mean Square Error (Ri < Rbest
i )

Rbest
i = Ri

c̃sbesti = c̃si

T best
i = T̃ ′

i

ENDIF
ENDFOR

ENDFOR



Fig. 1. Mechanical vibration artefact for two different acquisitions. Column 1: Color-FA image of the tensors estimated with
LLS only. Column 2: A gradient image corresponding to a gradient direction with a strong left-right component, showing a
strong vibration artefact, Column 3: Illustration of the voxels for which the gradient image corresponding to column 2 is reliable
(white voxels). Column 4: Robust tensor estimate with our RANSAC approach. Column 5: Corrected gradient image. Column
6: Robust tensor estimate with the RESTORE approach. The RANSAC estimation is less corrupted by the vibration artefact,
characterized by the strong red component in the region pointed in the color FA image.

2.2. Methods

We evaluated our approach with DWI acquisitions acquired
in routine clinic on a Siemens 3T Trio scanner. All acquisi-
tions were composed of 5 b = 0s/mm2 baseline images and
30 unique direction DW-images at b=1000s/mm2. We show
here the results for three different acquisitions corrupted by
patient motion or by the vibration artefact.

The spatial alignment of the diffusion weighted images
were corrected for possible head motion by rigid registration
of the DW-images to the b = 0s/mm2 image. The gradi-
ent orientations were compensated for the rotation component
of the transformation for each image. We investigated the
robutness of our RANSAC tensor estimation approach to the
aforementioned local artefacts. The results were compared
to the RESTORE [4] algorithm. Additionally, our approach
was illustrated by reporting the corrected DW-images. It was
achieved by computing the DW-signal predicted by the robust
tensor estimate for all voxels detected as corrupted.

3. RESULTS

The RANSAC tensor estimation procedure was implemented
in C++ and parallelized in space to reduce the processing bur-
den. The model parameters were set as follows: K = 1000,
α = 5, and N init = 15 to ensure that sufficient data are
included when estimating the initial tensor T̃i in presence of
noise. The RANSAC tensor estimation time for K = 1000
was approximately 30 minutes on a 3Ghz Intel Xeon (4 cores

and hyperthreading).
We report in Fig.1 the results of the robust estimation for

two different acquisitions corrupted by the mechanical vibra-
tion artefact. Fig.2 shows the results for an acquisition in
which a subset of slices were corrupted by patient motion.

4. DISCUSSION

Diffusion tensor estimation using the RANSAC paradigm
enables tensor estimation robust to local artefacts that cor-
rupt a subset of gradient images. We showed that RANSAC
were more robust than RESTORE [4] to the vibration artefact
(Fig.1). Interestingly, we showed clearly restored details in
the region corrupted by the artefact when correcting the gra-
dient images (column 5). These details were not visible in
the original gradient images (column 2). When considering
the acquisition corrupted by patient motion (Fig.2), we quali-
tatively observed no major difference in the color-FA images
between LLS, RANSAC and RESTORE. However, the effect
of correcting with our approach the corrupted gradient image
was noticeable (Fig.2e). A quantitative assessment of the
estimation uncertainty with bootstrap techniques will be con-
sidered in future works to better characterize the approaches.

In contrast to RESTORE, the RANSAC paradigm makes
no assumption on the model to estimate. Instead, it deter-
mines the optimal subset of data that are consistent together
for the considered model. from a large number of randomly
initialized subsets. This makes RANSAC not sensitive to the
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Fig. 2. Patient motion during the acquisition of a gradient image. (a): Color-FA image of the tensors estimated with LLS only.
(b): A gradient image corresponding to a gradient image corrupted by motion. (c): Illustration of the voxels for which the
gradient image corresponding to (b) is reliable (white voxels). (d): Robust tensor estimate with our RANSAC approach. (e):
Corrected gradient image. (f): Robust tensor estimate with the RESTORE approach.

initialization step, and not limited by priors on the objective
function. We showed that the higher computational burden
required by RANSAC is valuable.

We showed that the RANSAC tensor estimation was ro-
bust to the vibration artefact. In [2] the vibration artefact was
corrected by introducing in a LLS approach a co-regressor
depending the left-right component of the gradient directions.
It has the disadvantage of adding an extra parameter to esti-
mate, and of assuming that all voxels of a gradient image with
a strong left-right component are potentially affected, which
is generally not the case.

In this work, we detect and correct for local artefacts by
modeling the diffusion profile with a single-tensor model es-
timated in the RANSAC paradigm. Using the single-tensor
model enables multiple RANSAC iterations with a reasonable
computational burden. However, the single-tensor model is
well known to be unable to represent complicated structures
such as fascicles crossings. Because RANSAC makes no as-
sumption on the model to estimate, using another diffusion
modeling technique such as the multi-tensor model, spherical
deconvolution or Q-Ball imaging would be straight-forward
to incorporate. However, voxels which are outliers under the
tensor model assumption are likely to be outliers with other
techniques too. Robust but efficient estimation of more com-
putationally intensive diffusion models could be achieved by
considering at each voxel only the reliable gradient directions
identified by our approach.
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