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ABSTRACT

Delineation of white matter fascicles is generally achieved
with tractography by specifying seeding and exclusion re-
gions of interest (ROIs) defined by anatomical landmarks.
In practice, the most popular approach has been to manually
draw the ROIs for each scan which requires extensive train-
ing, is strongly subject to inter- and intra-expert variability
and is highly time consuming. Fully automatic localization
of the ROIs is of central interest, particularly for white matter
investigations involving a large number of subjects. In this
work, we propose an original approach in which the ROIs
are localized using the fuzzy set theory by discovering stable
anatomical spatial relationships in the brain anatomy. Our
approach relies on a learning procedure, in which stable re-
lationships are identified from a limited number of training
templates supplied with manually delineated ROIs. For a new
subject, the spatial relationships are applied and the ROIs lo-
calized. We show that our approach enables successful auto-
matic delineation of the ROIs in the individual. Importantly,
we show that this localization is robust across subjects age.

Index Terms— DWI, Tractography, Region of Interest,
Fuzzy spatial relationships

1. INTRODUCTION

Measuring the water diffusion with magnetic resonance diffu-
sion weighted imaging (MR-DWI) has enabled non-invasive
investigation of the white matter (WM) in the brain. In a num-
ber of applications, DWI is paired with tractography in order
to localize and characterize WM fascicles of interest. For ex-
ample, fascicles such as the motor pathways (corticospinal
tract), the optic radiations, the language pathways or the cor-
pus callosum can be successfully localized. Tractography re-
covers the fascicle pathway by delineating highly anisotropic
trajectories of diffusion passing through selection ROIs and
originating in seeding ROIs. These ROIs are generally manu-
ally drawn by an expert for each subject based on the anatomi-
cal knowledge of known fascicle trajectories. Exclusion ROIs
can also be employed to exclude those tract streamlines that
pass through regions that are not anatomically plausible.

The most widely used approach requires manually draw-
ing seeding, selection and exclusion ROIs prior to tractog-
raphy. This, however, is highly time consuming, requires
extensive training and is strongly subject to inter- and intra-
expert variability. Automatic fascicles delineation has raised
increasing interest in the literature. A number of approaches
have focused on performing whole brain tractography and
subsequently clustering the fascicles using a known atlas of
fascicles [1]. Other approaches have focused on automatically
delineating the seeding, selection and exclusion ROIs prior to
tractography, such as by elastically aligning a manually delin-
eated atlas of ROIs [2]. Recently, [3] proposed to estimate the
consensus ROIs with STAPLE [4] after non-rigid alignment
of a collection of templates with manually delineated ROIs.

A natural alternative for the localization of neuroanatomi-
cal regions such as tractography ROIs is to describe them with
spatial relationships which are stable across subjects. Spatial
relationships are ubiquitous in natural language descriptions
found in neuroanatomy textbooks and are naturally utilized by
experts when manually drawing ROIs for tractography. For
example, the lateral geniculate nucleus, which is a primary
relay center along the optic tracts, is typically described as a
“small structure that protrudes slightly from the posteroinfe-
rior aspects of the thalamus” [5]. Spatial relationships have,
however, scarcely been employed in automatic brain image
analysis. To our knowledge, only a few MR segmentation
approaches have investigated the use of spatial relationships
by integrating them either in a deformable model [6] or in a
Markovian segmentation framework [7].

In this work, we propose for the first time to automatically
delineate ROIs based upon a description with fuzzy anatom-
ical spatial relationships with respect to known anatomical
landmarks in the brain. Our approach relies on a learning
procedure to discover stable spatial relationships from a lim-
ited number of templates with manually delineated ROIs.
For analysis in an individual target subject, these relation-
ships rules are represented by 3-dimensional fuzzy maps in
the fuzzy set theory framework and combined together using
information fusion between fuzzy sets [8]. We show that
our SPAtial RELation ROI (SPAREL-ROI) approach enables
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Fig. 1. The fuzzy map for a distance relation is constructed
in two steps. First the image of the minimum distance of
each voxel to the reference structure (a) is computed (b)
(blue=close; green=far). Second, a fuzzification function
(c) is applied, whose parameters describe the imprecise dis-
tance of the target object with respect to the reference. This
leads to the fuzzy map (d) describing the distance relationship
(blue=0; red=1).

successful delineation of the ROIs in the individual. We com-
pared SPAREL-ROI to the multiple template fusion approach
described in [3] and show that our approach can provide supe-
rior localization and is more robust to age disparity between
the templates and the target subject.

2. MATERIAL

Fuzzy spatial relationships. The imprecise nature of spa-
tial relationships is known to be well modeled by fuzzy set
theory and the possibilistic framework [8]. Importantly, this
provides us with flexible tools for information fusion across
fuzzy sets which can be used to combine multiple spatial
relationships. Following the approaches of [8, 6, 7], we rep-
resent spatial relationships as 3-dimensional fuzzy maps in
a possibilistic framework. Here, we currently consider only
distance relationships that describe the distance of a target
object with respect to a reference object (Fig. 1).

Automatic learning of the spatial relationships in the
anatomy. We consider a set of T templates (T1, . . . , TT ),
each of them being supplied with a T1-weighted image
T T1W
t , a manual delineation of the ROIs T manualROI

t , a
diffusion tensor image T DTI

t and an image of anatomical
landmarks T landmarks

t utilized as reference objects when
learning the spatial relationships. The images share the
same coordinate system defined by T T1W

t . In this work,
the anatomical landmarks T landmarks

t were provided by an

automatic parcellation of T T1W
t in multiple cortical and sub-

cortical structures.
For each ROI r, we estimate the mean and standard de-

viation of the minimum distance (µmin
r,l , σ

min
r,l ) and maximum

distance (µmax
r,l , σ

max
r,l ) between the ROI and each anatomical

landmark l ∈ T landmarks
t among the templates. In the fol-

lowing, we consider only the L distance relationships with
smallest σmin

r,l + σmax
r,l which amounts to considering only the

L most stable spatial relationships in the anatomy. Addition-
aly, we identify the major fascicle orientation in each ROI r.
To this end, we consider the fascicle orientations to follow
a 3-dimensional Gaussian distribution G(µ−→vr , σ

−→v
r ) whose pa-

rameters are estimated based upon the manually drawn ROIs
and the principal eigen vector −→vi of each tensor in the tem-
plates T DTI

t . Our complete learning procedure is synthesized
by the following pseudo-code:
FOR each ROI r to learn

FOR each landmark l in T landmarks
t

Determine (µmin
r,l , σ

min
r,l , µ

max
r,l , σmax

r,l ) among templates

ENDFOR

Determine (µ
−→v
r , σ

−→v
r ) from T DTI

•

ENDFOR

Delineation of the ROIs in a target subject. We con-
sider a subject S in which the ROIs will be automatically de-
lineated. For each ROI r, the 3-D fuzzy maps of the L most
stable distance relationships identified in the learning proce-
dure are computed (see Fig.1d). The maps are combined to-
gether using the conjunctive fusion operator between fuzzy
sets described in [8] in order to form a fuzzy localization map
of the ROI r in S (see Fig.2c).

The localization is refined by using the knowledge of the
expected fascicle orientation in the ROI. We consider the ten-
sor image SDTI and compute at each voxel i the member-
ship mi ∈ [0, 1] of the fascicle orientation −→vi to the esti-
mated Gaussian fascicle orientation distribution G(µ−→vr , σ

−→v
r )

by mi = exp(− (−→vi−µ
−→v
r )

2

2(σ
−→v
r )2

). mi verifies mi = 1 when the
orientation at voxel i exactly matches the estimated mean ori-
entation µ

−→v
r in the training ROIs. The fascicle orientation

membership map and the fuzzy localization map are com-
bined by conjunctive fusion. Finally, the membership values
are thresholded, leading to the automatic delineation of the
ROI r. The localization procedure is synthesized by the fol-
lowing pseudo-code:
FOR each ROI r to localize in S

FOR the L landmarks l with smallest (σmin
r,l + σmax

r,l )

Fr,l ← Fuzzy map of the distance relationship

with respect to l

using (µmin
r,l , σ

min
r,l , µ

max
r,l , σmax

r,l ).

ENDFOR

Fr ← Fusion of the L fuzzy maps (Fr,1, . . . , Fr,L)

Fr ← Fusion of Fr with G(µ
−→v
r , σ

−→v
r ) from SDTI

Final ROI ← Threshold Fr

ENDFOR
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Fig. 2. Illustration of two automatically extracted stable spa-
tial relationships to describe the left LGN. Relationship with
respect to the amygdala (a); relationship with respect to the
brain stem (b); and the final fusion of the L stable relation-
ships describing the left LGN (c).
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Fig. 3. Localization of the ROIs in an individual by SPAREL-
ROI (a) and STAPLE-ROI (b). With STAPLE-ROI the re-
gions in the CC and in the LGN are misplaced, probably due
to errors in the elastic registration. Resulting tractography
when seeding from SPAREL-ROI (c) and STAPLE-ROI (d).
It shows SPAREL-ROI to provide much better results.

3. METHODS

Our training dataset (T1, . . . , TT ) was composed of T = 9
healthy controls (age: 16-25yo; mean age: 19.8yo; standard devi-
ation: 2.9yo) with good quality T1-weighted (T1w) MPRAGE
and DWI acquisitions. Our approach requires the definition of
anatomical landmarks necessary to compute the spatial rela-
tionships. In this work, we consider a parcellation of the T1w

Fig. 4. Assessment of the ROI delineation performance. We
achieved T = 9 different ROIs delineations by excluding
each time a different template. For each excluded template
Tt, we automatically delineated the ROIs of Tt with SPAREL-
ROI and STAPLE-ROI and achieved tractography. For each
structure (CC, CST L/R, OT L/R), we computed a fascicle
density image, quantifying both the spatial extent and the
density of the localized fascicles. The fascicle density im-
ages obtained when using the automatically and manually
(ground truth) ROIs were compared by assessing the Root
Mean Squared Error (RMSE).

image in 114 cortical and subcortical structures based on a
multiple-template fusion approach [4] utilizing 18 templates
provided by the Center for Morphometric Analysis at Mas-
sachusetts General Hospital (IBSR). The DW-images were
aligned with affine registration to the T1w image. We cur-
rently considered the delineation of five WM fascicles: the
corpus callosum (CC), the left and right corticospinal tracts
(CST L/R) and the left and right optic tracts (OT L/R). To
illustrate our approach, we currently adopted a seeding strat-
egy for the delineation of the fascicles which is based on one
seeding ROI per fascicle. These five ROIs were manually
delineated in each template by expert inspection of color-FA
images. The manual delineation protocol is described as fol-
lows. CC: one sagittal slice in the body of the corpus callo-
sum; CST L/R : five axial slices in the L/R internal capsule
(IC); OT L/R : six coronal slices in the L/R lateral geniculate
nucleus. We compared our SPAREL-ROI approach to the ap-
proach proposed by [3] referred to as STAPLE-ROI.

First, we qualitatively compared both the delineated ROIs
and corresponding tractography1 when using SPAREL-ROI
and STAPLE-ROI for a subject not included in the training
dataset. Second, we performed a leave-one-out experiment
and quantitatively compared the SPAREL-ROI and STAPLE-
ROI. Finally, we compared SPAREL-ROI and STAPLE-ROI
on a one-year-old subject which is a very different age com-
pared to the age of the subjects in our training dataset.

1In this work, all tractography experiments were achieved with the same
parameters: FA stopping criterion:0.15; angle stopping criterion: 40 degrees;
15 tracts per voxel of the ROI
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Fig. 5. Automatic ROI delineation and tractography with a 1
y.o. subject with STAPLE-ROI (a) and SPAREL-ROI (b).

4. RESULTS

We first report the results of the ROIs’ delineation for a single
subject. Fig.3a-b illustrates the estimated ROIs for IC, CC and
LGN and Fig.3c-d the final tractography outcome. Fig.4 illus-
trates the results from the leave-one-out validation, demon-
strating that our SPAREL-ROI approach results in superior
delineation of the fascicles of interest than those generated
using the STAPLE-ROI method. It also shows SPAREL-ROI
to be more stable to the choice of the training dataset. Finally,
Fig.5 illustrates that SPAREL-ROI provides more anatomi-
cally accurate results when applied to a subject whose age
was very different compared to the age of the subjects used in
the training dataset.

5. DISCUSSION

We proposed a fully automatic approach for the delineation of
WM fascicles based on the description of the brain anatomy
with fuzzy spatial relationships. We have demonstrated that
our SPAREL-ROI approach outperforms STAPLE fusion of
the ROI templates (Fig. 4) and is more robust age disparity
between the templates and the target subject (Fig. 5).

Importantly, our approach requires the definition of
anatomical landmarks to compute the spatial relationships.
Here we considered a brain parcellation computed with a
template-fusion approach. We remark that such a multi-
template parcellation may be perturbed the same way the
multi-template ROIs (STAPLE-ROI) [3] is. However, our
results (Fig.3, Fig.4 and Fig.5) indicate that small errors in
the registration of the parcellation templates, which invari-
ably propagate error to the localization of the landmarks, has
far less impact than registration error in the ROI templates
(Fig.3a-b). In SPAREL-ROI, the landmarks are only used as
a proxy to incorporate the imprecise knowledge of the brain
anatomy provided by spatial relationships. Ultimately, the
fusion of the fuzzy spatial relationship maps provides bet-
ter results by being more robust to registration errors and to
template-to-individual age differences (Fig.5). In this work
we currently considered only distance relationships across
anatomical objects (Fig.1,2). We demonstrate that fusion of

such distance relationships enables accurate localization of
the ROIs and accurate delineation of the fascicles. Partic-
ularly, we showed that the fusion of distance relationships
can successfully describe a single-slice ROI such as the ROI
in the body of the CC. In contrast, the fusion of misaligned
single-slice ROI templates in STAPLE-ROI can lead to a poor
agreement between the templates and to a poor localization
of the fascicles (Fig. 5).

In future work we will assess the benefits of describing
the brain anatomy with additional spatial relationships such
as orientation and symmetry relationships and will investigate
the performance of SPAREL-ROI with pathologic brains. We
additionally expect to expand our collection of template ROIs
for the automatic delineation of more complete collections of
major WM fascicles of the brain in individuals.
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