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Abstract

Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization
of the white matter but suffers from a relatively poor spatial resolution. Increasing the spa-
tial resolution in DWI is challenging with a single-shot EPI acquisition due to the decreased
signal-to-noise ratio and T2* relaxation effect amplified with increased echo time. In this
work we propose a super-resolution reconstruction (SRR) technique based on the acquisition
of multiple anisotropic orthogonal DWI scans. DWI scans acquired in different planes are
not typically closely aligned due to the geometric distortion introduced by magnetic suscep-
tibility differences in each phase-encoding direction. We compensate each scan for geometric
distortion by acquisition of a dual echo gradient echo field map, providing an estimate of
the field inhomogeneity. We address the problem of patient motion by aligning the volumes
in both space and q-space. The SRR is formulated as a maximum a posteriori problem.
It relies on a volume acquisition model which describes how the acquired scans are obser-
vations of an unknown high-resolution image which we aim to recover. Our model enables
the introduction of image priors that exploit spatial homogeneity and enables regularized
solutions. We detail our SRR optimization procedure and report experiments including nu-
merical simulations, synthetic SRR and real world SRR. In particular, we demonstrate that
combining distortion compensation and SRR provides better results than acquisition of a
single isotropic scan for the same acquisition duration time. Importantly, SRR enables DWI
with resolution beyond the scanner hardware limitations. This work provides the first evi-
dence that SRR, which employs conventional single shot EPI techniques, enables resolution
enhancement in DWI, and may dramatically impact the role of DWI in both neuroscience
and clinical applications.
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1. Introduction

Diffusion-weighted imaging (DWI) is a key imaging technique for the investigation and
the characterization of the brain white matter architecture and microstructure. It relies on
the acquisition of multiple 3-dimensional diffusion-weighted images, probing the capability of
the water to diffuse in various diffusion directions and scales. DWI requires a fast acquisition
technique to ensure a moderate scan duration time, and to ensure measurement of the DW-
signal before it nulls out. Single-Shot Echo-Planar Imaging (SS-EPI) is the most commonly
employed sequence in DWI. It acquires a whole slice after a single excitation, generally
covering the whole brain in less than ten seconds for each 3-dimensional DWI. However,
spatial resolution is strongly limited with SS-EPI. While individual axon diameter is on the
order of 1-30µm (Mori and van Zijl, 2002), typically achievable DWI resolution is on the
order of 2x2x2mm3. Consequently, due to strong partial volume effect, DWI has been limited
to the investigation of the major fiber “highways” in the brain. Increasing the resolution of
DWI acquisitions holds out the potential (1) to allow investigation of smaller white matter
fascicles not visible at conventional resolution, and (2) to reduce partial volume averaging
of white matter fascicles, enabling a more accurate white matter and brain connectivity
assessment.

Resolution enhancement is challenging. Resolving finer structures, i.e. increasing
the spatial resolution, requires sampling of higher frequencies in k-space2. This is highly
challenging with an SS-EPI acquisition. First, increasing the resolution makes the acquisition
highly demanding on the scanner gradient coils, which have to switch as quickly and as
linearly as possible when achieving the spatial encoding. Second, the time to encode a
larger k-space in a single shot is not negligible and leads to larger echo time (TE). This
is fundamental in DWI because the DW-signal exponentially decreases with increasing TE
(Qin et al., 2009), as described by the Stejskal-Tanner equation (Stejskal and Tanner, 1965)
:

Si = S0,ie
−TE/T2e−bDi ,

where Si is the diffusion signal in a voxel i, S0,i is the non-attenuated signal, TE is the echo
time, T2 the T2 relaxation time in the tissue, b is the b-value or b-factor (Le Bihan, 1991)
and Di is the Apparent Diffusion Coefficient (ADC) in the voxel i. Consequently, encoding
a larger k-space leads to an increased TE, which in turn leads to a drop in SNR for all of
the diffusion measurements, regardless of the applied b-value b.

SS-EPI is very sensitive to magnetic field inhomogeneities caused by susceptibility changes
at tissue interface, such as air and tissue. Particularly, areas in the temporal lobes near the
petrous bone and areas in the frontal lobe near the frontal sinuses are commonly affected.
The field inhomogeneity gives rise to phase perturbation in k-space which accumulates dur-
ing the acquisition of each slice (Jezzard and Balaban, 1995). This results in severe distortion
in the form of voxel shifts in the image space, of largest magnitude in the phase-encoding

2Intuitively, an edge is described by a rapid change in intensity over a short distance in the image, and
is consequently a high frequency spatial feature.
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direction (Jezzard and Balaban, 1995). Consequently, the increased TE due to the larger
k-space encoding leads to increased accumulation of errors during the spatial encoding. This
leads to severely increased geometric and intensity distortion in the phase encoding direction.

Ultimately, reducing the voxel size is challenging in MRI because the SNR is directly
proportional to the voxel size, and proportional to the square root of the number of averages.
Decreasing the voxel size by a factor α (e.g. α = 8 to reduce the voxel size from 2x2x2mm3

to 1x1x1mm3) requires α2 (e.g. 64) averages to ensure a similar SNR. A 5 minute acquisition
would become a 5 hour scan, which is not realistic.

Solutions to achieve higher resolution in DWI include improvements to the MRI scanner
hardware itself. Among them, employing higher magnetic fields (7 Tesla, 11 Tesla) enables
MR imaging with higher SNR. Using stronger and faster gradients enables imaging with
lower echo time, reducing the distortion and limiting the drop in SNR caused by the larger
spatial encoding. Using gradient coils dedicated to the diffusion encoding, known as Gradient
Insert (Kimmlingen and et al, 2004), has also been proposed to reduce the TE. These
solutions are effective but require a hardware upgrade of the scanner.

Recent works in ultra-high field DWI (7 Tesla or more) have investigated segmented
EPI techniques, in which each slice is acquired in multiple shots, reducing the TE for each
shot. These techniques, originally designed to attenuate the severe distortion at high field,
can also be employed for encoding a larger k-space for resolution enhancement in DWI, at
the expense of multiplying the scan duration time by the number of shots. However, phase
inconsistencies resulting from even minimal physiological motion during the application of
the sensitizing gradients are still challenging to correct in DWI.

Increasing the resolution via algorithmic contributions. Another solution to in-
creasing the resolution is to consider algorithmic contributions. In tract density imaging
(TDI), Calamante et al. (2010) have explored the application of interpolation of fiber tracts
inside voxels of size smaller than the resolution of the DW-acquisition. This model-based
interpolation technique provides an elegant manner to visualize dense tractography stream-
lines in a 3-D volume. However, TDI does not provide any resolution enhancement of the
imaging data. The obtained image contains exactly the same information as the tractogra-
phy, and higher frequencies in k-space are not sampled. In contrast, we propose in the next
section to increase the spatial resolution by both algorithmic contributions and modification
of the acquisition strategy.

Increasing the resolution via super-resolution reconstruction. In this work,
we propose to increase the resolution by acquisition of orthogonal anisotropic DW acqui-
sitions and by recovering the underlying high resolution images with an approach inspired
by super-resolution reconstruction techniques. Super-resolution reconstruction (SRR) ap-
proaches were originally developed for the reconstruction of high-resolution (HR) images
from a set of low-resolution (LR) images in video sequences (Irani and Peleg, 1993). To our
knowledge, only Peled and Yeshurun (2001) have investigated SRR in DWI. They proposed
to employ the Irani-Peleg SRR technique (Irani and Peleg, 1993) from a set of spatially
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Figure 1: Scheme illustrating the super-resolution reconstruction from the acquisition of two orthogonal
thick slices.

subpixel-shifted scans in the in-plane dimension. However, MRI being a Fourier acquisition
technique, in-plane shifting has been shown to be equivalent to a global phase shift in k-space
(Greenspan, 2002). Such a technique does not enable any resolution enhancement in MRI
but is equivalent to interpolation by zero-padding of the raw data in the temporal domain.
Recently, Greenspan (2009) has shown that employing subpixel-shifted scans in the slice-
select dimension does provide resolution enhancement in anatomical MRI. However, this has
never been employed for DWI. Gholipour et al. (2010) have employed multiple orthogonal
fast slice scans and have developed a model-based super-resolution reconstruction technique
to acquire high-resolution anatomical images of moving subjects in fetal imaging. Finally,
Jiang et al. (2009) have investigated DWI of moving subjects by (1) registering each slice to
a common reference, (2) correcting the diffusion gradient orientation for each slice and (3)
by estimating a diffusion tensor at each voxel by using scattered data interpolation. This
model is based on a tensor, which is not appropriate for modeling more complex diffusion
phenomena.

Building upon our preliminary work (Scherrer et al., 2011), we propose to perform the
super-resolution reconstruction of DW images from thick slice orthogonal acquisitions (see
Fig.1). Employing thick slice orthogonal acquisitions amounts to sampling higher frequencies
in k-space along only two axes, in different orthogonal directions. Each acquisition contains
higher frequencies in k-space in two of the three axes, and this enables the enhancement
of resolution in 3-D. However, reconstruction from orthogonal acquisitions is challenging in
DWI. Indeed, orthogonal acquisitions require phase-encoding direction changes, leading to
very different geometric and intensity distortion. This makes the precise alignment of the
images impossible. Locally, overlapping voxels across acquisitions may represent a different
brain location, which strongly perturbs the reconstruction.

Here we propose for the first time to achieve super-resolution reconstruction (SRR) from
distortion compensated anisotropic orthogonal DW acquisitions. First, DW images are
corrected for distortion by acquisition of a field map (Jezzard and Balaban, 1995; Cusack
et al., 2003). This provides us with an estimate of the field inhomogeneity, which can in
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turn be employed to correct for the voxel shift in the image space. Second, we propose a
technique to align each volume both in space and in q-space to account for possible patient
motion. Third, we formulate the super-resolution reconstruction from multiple scans as a
maximum a posteriori (MAP) estimation problem. Our approach is formulated in the image
space and relies on an image acquisition model. The forward model links the generation of
the acquired volumes with the unknown HR volume we aim to recover. The super-resolution
reconstruction is the inverse problem, which involves estimating the original HR volume that
generates the acquired anisotropic volumes. Our MAP formulation enables introduction of
image priors that exploit spatial homogeneity and provide regularized solutions.

The paper is organized as follows: we detail the field-map based EPI distortion correction
in Section 2.1, and the alignment in space and q-space in Section 2.2. In Section 2.3, we
describe the actual super-resolution reconstruction from distortion compensated anisotropic
acquisitions, and provide the pseudo-code of the complete DWI-SRR optimization proce-
dure. Section 2.4 describes the various experiments performed to evaluate our approach,
which includes numerical simulations, synthetic SRR and real world SRR. We report the ex-
perimental results in Section 3. Particularly, we show that SRR outperforms the acquisition
of a single isotropic scan for the same acquisition duration time. It provides more detailed
structures and better tractography results. This work provides the first evidence that SRR
enables resolution enhancement in DWI.

2. Material and Methods

2.1. Correction for EPI distortion by field-map unwarping.

Orthogonal DW-images experience very different distortion because they cannot be ac-
quired with the same phase-encoding direction. Since super-resolution imaging relies on the
fusion of spatial information from these multiple acquisitions, this distortion must be com-
pensated for to ensure that overlapping voxels among the acquisitions represent the same
brain location.

We correct for geometric and intensity distortion by field-map unwarping, utilizing the
phase field inhomogeneity map provided by the dual echo acquisition. We consider that
the pixel mis-location due to magnetic susceptibility differences occurs only in the phase
encoding direction and is negligible in the read-out direction (Jezzard and Balaban, 1995).
The voxel shift ∆yr (in mm) at a location r is corrected from the phase value φr (in radians)
of the phase field map via the following expression (Jezzard and Balaban, 1995):

∆yr = (2π.∆TE.Bpe)
−1φr.∆qy,

where ∆TE is the difference in echo times of the dual echo gradient acquisition (in seconds),
Bpe is the bandwidth per pixel (in Hz/pixel), and ∆qy is the voxel spacing (in mm/pixel) of
the EPI image along the phase encoding direction. The image intensity values were corrected
using the Jacobian of the unwarping model to account for the effect of signal stretching or
shrinking.
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Figure 2: In presence of motion, the DW-images for the same applied diffusion-sensitization gradient may
represent different gradient directions in the patient coordinate system among the acquisitions.

2.2. Correction for possible motion by alignment in space and q-space.

We considerK orthogonal distortion compensated low-resolution (LR) diffusion-weighted
acquisitions containing G sensitizing-gradients each. The KG volumes should all be in pre-
cise alignment to enable the super-resolution reconstruction. First we perform an alignment
in space: we register each volume to a reference volume, chosen as the B = 0 s/mm2 volume
of the first DWI LR acquisition. Each gradient orientation is compensated for the rota-
tion component of the transformation, providing a gradient set gk = (gk1 , . . . , g

k
G) for each

acquisition k.
In the presence of motion, the DW-images may represent different gradient-sensitization

directions in the patient coordinate system among the K acquisitions (see Fig.2). However,
it is essential that the images combined by the SRR technique correspond to the exact same
“scene”, namely that they correspond to the same gradient direction with respect to the
anatomy, and show identical diffusion-attenuation patterns. Consequently, we propose to
perform an alignment of the volumes in q-space (see Fig.3). We consider that the DW-signal
varies smoothly in q-space and propose to resample the gradient images. We consider the
gradients of the first DWI LR acquisition as the reference gradients g̃ = g1. We align in
q-space all other k ≥ 2 DWI acquisitions so that their gradients exactly match g̃. This
is done by using interpolation in q-space. At each voxel, we consider the G intensity val-
ues corresponding to the gradients gk (red arrows in Fig.3). We then compute the new
intensity values corresponding to the gradients g̃ (blue arrows in Fig.3). The interpolation
is performed via Kriging (Matheron, 1963), a general and efficient statistical interpolation
framework originally introduced for geology and mining applications. This enables us to
easily perform scattered data interpolation. It determines the weights of the contribution
of each observed data via the resolution of a simple linear system. In the absence of mo-
tion (i.e. a gradient gj exactly matches a gradient g̃j′), the interpolated intensity exactly
matches the observed intensity. As a result, the K LR acquisitions are all aligned in space
and represent the same diffusion sensitizing-gradient set g̃.
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(a) (b)

Figure 3: Alignment in q-space. We consider the first acquisition (k = 1, in blue) as the reference (a),
providing the reference gradient directions g̃ (in blue). The gradient images of an acquisition k > 1 are
resampled so that its gradient directions gk (in red) correspond to the reference gradients g̃. At each voxel,
we compute the novel intensities corresponding to the gradients g̃ by interpolation in q-space from the
observed intensities corresponding to gk (b).

2.3. Super-resolution model-based reconstruction.

In this section we consider that all of the LR volumes are aligned in space and in q-space.
The super-resolution reconstruction technique we now address is performed for each gradient
direction separately. For each gradient g̃j, we aim to recover the HR image xj underlying
the K LR images yj = (y1,j, . . . ,yK,j). By omitting the gradient dependency to simplify the
notations, we consider the K LR volumes y = (y1, . . . ,yK) to be the observable degraded
versions of the same unknown HR volume x we aim to recover. x is estimated according to
the maximum a posteriori principle, by maximizing:

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x)

= arg max
x

[ln p(y|x) + ln p(x)] , (1)

which decomposes into a likelihood term and a prior term.

Likelihood term p(y|x): we consider a model that describes how the LR volumes are ob-
tained from the unknown HR volume. We propose the following acquisition model:

yk = DkBkMkx + εk , (2)

where the volumes yk and x are expressed as column vectors by a lexicographical reordering
of the pixels, Dk is a down-sampling matrix, Mk is the warping matrix that maps the HR
volume x to the LR volume yk and εk is the residual noise vector. Bk is the blur, or point
spread function (PSF) of the MRI signal acquisition process. It is constructed from the
imaging parameters. The PSF can be separated into three components corresponding to
the slice-selection direction and the phase- and frequency-encoding directions. We currently
consider a PSF in the slice-selection direction only, which describes the slice selection profile
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(Noll et al., 1997; Greenspan, 2002; Jiang et al., 2007). We consider a Gaussian slice selection
profile of variance σ2

PSF. Consequently, on the basis of Eq.2, the unknown HR volume x goes
through geometric and signal modifying operations, including motion, signal averaging, and
resampling, to generate the acquired LR volume yk. Assuming a Gaussian noise with zero-
mean and variance σk for εk, the likelihood of the LR volume yk under the model described
by Eq.2 can be written as:

p(yk|x, σk) =
1

σk
√

2π
exp

(
−||yk −DkBkMkx||2

2σ2
k

)
. (3)

Assuming statistical independence of the noise between the acquisitions, we have p(y|x, σ) =∏K
k=1 p(yk|x, σk) with σ = (σ1, . . . , σK).

Prior term p(x): the term p(x) in Eq.1 enables us to incorporate a prior knowledge on
x. In this work we consider a regularization prior that exploits spatial homogeneity. More
precisely, we favour smoothness of x by setting p(x|λ) = exp(−λ||Qx||2) where the matrix Q
is symmetric positive definite and represents a linear high-pass operation. The parameter λ
controls the regularization strength. In this work, Q is chosen as the 3-D discrete Laplacian
corresponding to the following approximation of the partial derivative for a 3-D image I
indexed by u ∈ IN3, and for a direction um ∈ IN3 (m ∈ {1, 2, 3}):

∂mI(u) ≈
(
I(u + um)− 2I(u) + I(u− um)

)
/(2||um||). (4)

Ultimately, by considering the same σk across acquisitions, maximization of the posterior
distribution in Eq.1 leads to the following minimization:

x̂ = arg min
x

K∑
k=1

||yk −DkBkMkx||2 + λ||Qx||2 . (5)

DWI-SRR optimization procedure. The matrix DkBkMk is especially large, and the
classical solution through the computation of the pseudo-inverse prohibitive. Instead we
use a steepest descent iterative minimization approach. Differentiation of Eq.5 leads to the
following update at each step:

x̂n+1 =x̂n − α

[
K∑
k=1

MT
kB

T
kD

T
k (DkBkMkx̂

n − yk) (6)

+ λQTQx̂n

]
,

where α is the step size and MT
k denotes the transpose of Mk. The iterative algorithm

is initialized by setting x̂0 equal to the mean of the aligned LR volumes. The iterative
minimization is stopped when ||x̂n+1 − x̂n||1 < TSTOP.
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The complete DWI-SRR optimization procedure including distortion compensation, space
and q-space alignment and the actual reconstruction is synthesized by the following pseudo-
code:

FOR each LR study k

FOR each gradient image of k

Correct for distortion with the field-map

MT
k ← Register to the reference volume

Apply the transform to the gradient

ENDFOR

ENDFOR

FOR each output gradient gg

FOR each LR study k

yk ← Compute the gradient image for gg

(q-space interpolation)

ENDFOR

Compute x̂0 ← Mean of the MT
kD

T
k yk

WHILE ||x̂n − x̂n−1||1 ≥ TSTOP

x̂n+1 ← Update with Eq. 6

ENDWHILE

ENDFOR

2.4. Methods

Implementation. The complete DWI-SRR optimization procedure was implemented
in C++. The super-resolution reconstruction implementation was optimized with various
techniques to reduce the processing burden. The MT

kB
T
kD

T
kDkBkMk and MT

kB
T
kD

T
k yk ma-

trices were precomputed, and the derivative of the Laplacian corresponding to the finite
difference scheme in Eq.4 was computed analytically. To accelerate the convergence, the
steepest descent algorithm was implemented with a variable per-voxel step-size α which
incorporated inertia: the step-size was multiplied by 1.1 when the sign of two consecutive
computed gradients did not change, and divided by two otherwise. α is initialized to 0.01
and constrained to lie in [0.1, 10−6]. The FWHM for the Gaussian slice model was set to half
the slice thickness, by setting σPSF = (slice thickness)/(4

√
2 ln 2). Other parameters were

set to λ = 0.001 and TSTOP = 10−5.

Numerical simulations. First, we evaluated our approach with numerical simulations.
Since in this case the images did not experience motion or EPI distortion, these two steps
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were ignored. The DW-signal for tensors was simulated with a b-value of 1000s/mm2 for 15
directions, and the DW-images corrupted by Rician noise (SNR of 30dB for the b=0s/mm2

image). Linear down-sampling with a factor of 4 was applied to each gradient image in
each of the three directions, providing three simulated LR acquisitions. Then, the super-
reconstruction from the three LR acquisitions was performed, and compared to the orig-
inal image. Various tensor estimations were performed, and the corresponding fractional
anisotropy (FA) maps were qualitatively compared.

Synthetic SRR scenario. Second, we simulated a SRR scenario by down-sampling a
real DWI acquisition in each of the three orthogonal directions. The real DWI acquisition
was performed on a Siemens Trio 3T scanner with a 32 channel head coil and the following
parameters: FOV=220mm, matrix=128x128, 68 slices, resolution=1.7x1.7x2mm3, 30 direc-
tions at B = 1000s/mm2, 5 B = 0s/mm2. The B = 0s/mm2 images were averaged together.
Down-sampling factors of 2 and 4 were considered to simulate the orthogonal axial, coronal
and sagittal thick slice acquisitions. The super-resolution reconstruction at the original reso-
lution was estimated and qualitatively compared to the original image. The SRR estimation
time was approximately 2 hours on a 3Ghz Intel Xeon (3 to 4 minutes per gradient image).
The SRR was quantitatively compared to the original acquisition by assessing the Peak
Signal to Noise Ratio (PSNR). The PSNR is a commonly employed measure when assessing
the quality of an image reconstruction algorithm. It is defined by 20 log10(MAX/

√
MSE)

with MAX being the maximum image intensity and MSE the mean square error. Higher
values indicate better reconstructions.

SRR from DWI acquisitions. Finally, we investigated the super-resolution reconstruc-
tion from real DWI acquisitions. We acquired K = 3 anisotropic DWI scans (axial, coronal,
and sagittal) on a Siemens Trio 3T scanner with a 32 channel head coil and the follow-
ing parameters: FOV=220mm, matrix=176x176, in-plane resolution=1.25x1.25mm2, slice-
thickness=2.5mm, 5 b=0s/mm2, 30 directions at b=1000s/mm2. The number of slices was
chosen to cover the whole brain, varying from 58 to 71 depending on the acquisition orien-
tation. The total acquisition duration time for the three scans was 17min00sec.

For comparison, we acquired an isotropic DWI scan with parameters chosen to match the
acquisition time of the three previous scans : matrix=146x146, resolution=1.5x1.5x1.5mm3,
100 slices, same sensitizing gradient orientations, two averages, 16min32sec.

Finally, a dual echo gradient echo field map image was acquired with TE1/2 = 5.19/7.65ms
and resolution=2x2x2.5mm3. The unwrapped phase field map required for the distortion
compensation was generated by the scanner. The phase field map image was processed
with median filtering with one voxel radius, and Gaussian smoothing with full width at half
maximum (FWHM) of 2.

Both the anisotropic and the isotropic acquisitions were corrected for distortion by utiliz-
ing the field-map unwarping technique described in Section 2.1. The unwarping processing
time was approximately twenty seconds per image. The SRR of each corrected DW-image
was achieved to create an isotropic volume of 1.25x1.25x1.25mm3 (FMC-SRR, see Fig.4).
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Figure 4: Schematic describing the experimental setup to evaluate the SRR reconstruction from real acqui-
sitions.

To investigate the effect of the distortion compensation, we also achieved the SRR with-
out any field-map correction (SRR) at the same isotropic resolution. We compared the
SRR technique to the isotropic acquisition by resampling the 1.5x1.5x1.5mm3 DW-images
to 1.25x1.25x1.25mm3 as well (ISO). Finally, we investigated the effectiveness of applying
a post-processing noise correction technique to the isotropic acquisition (d-ISO). We em-
ployed the Joint Linear Minimum Mean Squared Error (LMMSE) noise filter proposed by
Tristán-Vega and Aja-Fernández (2010).

Color fractional anisotropy (color-FA) maps were computed by considering the normal-
ized primary eigenvector of each tensor as a vector in the RGB space, modulated by the
tensor FA (Douek et al., 1991). We qualitatively compared the color-FA maps of ISO,
d-ISO, SRR and FMC-SRR.

We quantitatively compared the four experiments via residual bootstrapping (Chung
et al., 2006). The residual bootstrap is a model-based resampling technique. From an
estimated tensor-field, it generates a set of virtual new DWI acquisitions by randomly sam-
pling the model residuals, simulating new acquisitions with a different but realistic noise.
A new tensor-field was estimated from each virtual acquisition, and the corresponding vari-
ance of the FA assessed. The obtained FA variance is related to the estimation uncertainty.
A lower value indicates a lower uncertainty, indicating a better quality of the data. The
average FA variance for the four experiments ISO, d-ISO, SRR and FMC-SRR was
compared in a common 3-D region of interest.

Finally, tractography experiments were achieved. We considered tractography of the
corpus callosum, of the pyramidal tracts and of the medial cerebellar peduncle. The same
seeding region and the same tractography parameters were employed when generating tract
streamlines from ISO, d-ISO, SRR and FMC-SRR. The streamlines were color-coded
with the color-FA map and compared.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Numerical simulations. Fig.a. Original tensors used to simulate the DW signal. Fig.b-d: Tensors
estimated resp. from a single LR acquisition, from the mean of the LR acquisitions and from the SRR.
Fig.e-h: Corresponding tensor fractional anisotropy. It shows the tensor directions to be well estimated
from the mean (Fig.c). However, the SRR provides a much more accurate reconstruction of the complete
tensor (see the better FA uniformity in Fig.h).

3. Results

Numerical simulations. Fig.5 reports the results of the numerical simulations, showing
the tensors and corresponding FA maps for the original simulated acquisition (Fig.5a and
e), for one of the LR acquisitions (Fig.5b and f), for the mean of the three LR acquisitions
(Fig.5c and g) and for the SRR (Fig.5d and h). As expected, the estimation from a low-
resolution acquisition (Fig.5b and f) is very poor. Fig.5c shows that the tensor directions
are well estimated from the mean of the LR acquisitions. However, as seen on the FA map in
Fig.5h, the SRR provides a more accurate reconstruction of the complete tensor, providing
a sharper FA map.

Synthetic SRR scenario. Fig.6a shows the b = 0s/mm2 image of an original ac-
quisition (Fig.6a.i), the artificially down-sampled image corresponding to a simulated axial
acquisition (Fig.6a.ii), the mean of the three thick-slice acquisitions (Fig.6a.iii) and the SRR
(Fig.6a.iv). It shows the SRR to be qualitatively better contrasted and less blurry than the
mean of the LR images. Quantitatively, we report in Fig.6b-c the reconstruction accuracy
for each of the thirty gradient images. It shows an increase of PSNR on the order of 6dB
and 2dB with SRR for our two synthetic down-sampling scenarios. In Fig.7 we compare the
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(a) (b) (c)

Figure 6: Fig.a: Synthetic SRR scenario from a real acquisition. a.i: b = 0 image. a.ii: Axial down-sampled
b = 0 image with a factor of 4. a.iii: Mean of the b = 0 images of the LR acquisitions. a.iv: SRR of the
b = 0 image. The SRR is better contrasted and is less blurry than the mean. Fig.b and Fig.c: Quantitative
evaluation of the reconstruction accuracy in term of PSNR for the two- and four- down-sampling factors,
for each of the thirty gradient directions (x axis).

Figure 7: 3-Dimensional angular reconstructions of the diffusion signal at four voxels whose position is
shown on the b = 0s/mm2 image (left image). The voxels were chosen to have a high FA (FA > 0.9). The
obtained 3-D shapes are proportional to the apparent diffusion coefficient (ADC). We compared the 3-D
reconstruction performed from the mean image (first line) and from the SRR estimate (second line). The
stick indicates the major fiber direction estimated by a single-tensor model. The color indicates difference
between the reconstructed and ground truth intensities (difference in image intensity). It shows the SRR
estimate provides a much better reconstruction for each gradient image.
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(a) (b) (c)

(d) (e)

Figure 8: Field-map based distortion correction. (a): Phase field-map generated from the dual-echo gradient
echo sequence. The frontal lobe close to the sinuses is typically affected (region R1). (b): Axial acquisition
with EPI distortion (b=0s/mm2, phase-encoding direction: anterior to posterior). (c): Corrected image. (d):
Coronal acquisition with distortion (sagittal view, phase-encoding direction: head to foot). (e): Corrected
image. The red circles highlight regions of high distortion.

3-dimensional angular reconstructions of the diffusion signal at four voxels, for the mean of
the LR images (first line) and the super-resolution reconstruction (second line). For each
voxel 1 to 4, the angular reconstruction shapes were generated in spherical coordinates by
modifying the radial coordinate of a 3-d sphere. For each gradient direction, the radial coor-
dinate was set to the reconstructed DW-image intensity. The angular reconstructions were
color-coded according to the error in image intensity between the reconstructed DW-image
and the ground-truth. Consistent with Fig.5 and Fig.6, we show that the super-resolution
approach provides a much better reconstruction of the complete diffusion attenuation profile
compared to the mean of the LR acquisitions.

SRR from DWI acquisitions. We now report the results of the SRR from real
anisotropic orthogonal acquisitions. Fig.8 illustrates the field-map distortion compensation
that was applied to each DW-image. It depicts how orthogonal EPI acquisitions are sub-
ject to different geometric distortion depending on the phase-encoding direction (Fig.8b,d).
Fig.8c,e shows that the field-map unwarping substantially reduces the distortion.

Fig.9 illustrates the color-FA maps for ISO, d-ISO, SRR and FMC-SRR. Partic-
ularly, the color-FA of ISO (Fig.9a) is noisier, which is corrected when denoising in post-
processing (d-ISO, Fig.9b). However, fine structures are smoothed and lost when applying
the noise correction (region R1).

Fig.9c shows that non-compensation of the distortion (SRR) leads to a less detailed
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Figure 9: Color-FA maps for (a):ISO, (b):d-ISO, (c):SRR and (d): FMC-SRR (axial view). R1 points
out that fine structures are well conserved with FMC-SRR, despite the large slice thickness employed
for each anisotropic acquisition. R2 highlights a region in which SRR (without distortion compensation)
provides blurred results. Importantly, the structures in the region R2 are more detailed with FMC-SRR
than with d-ISO.

color-FA map (region R2). Fig.9d shows that fine structures far smaller than the slice thick-
ness (2.5mm) of the anisotropic acquisitions are well conserved with FMC-SRR (region
R1). Importantly, structures in the region R2 appear to be more detailed with FMC-SRR
than with d-ISO or SRR.

Fig.10 shows a zoom of the color FA maps in a region of the brain stem. Consistent with
Fig.9a, it shows that ISO provides a highly noisy color-FA (Fig.10b) and more generally
a noisy tensor estimation (Fig.10f). d-ISO provides smoother results (Fig.10c) but with
interpolation artifacts (region R3) and more blurred structures than FMC-SRR (region R1,
and Fig.10g). Fig.10d (SRR) shows that misalignment of the uncorrected acquisitions leads
to a missing structure (R2) in the color-FA because the whole tensors are poorly estimated
(Fig.10h). FMC-SRR provides the more detailed structures (Fig.10e/i).

Fig.11 illustrates the bootstrap results. It shows that the estimation uncertainty is much
higher with ISO. The uncertainty with the other techniques is comparable.

Fig.12 reports the tractography results for the corpus callosum. ISO (Fig.12a) provides
poor results due to the high noise corruption. The noise filtering in d-ISO (Fig.12b) enables
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Figure 10: Zoom on the color-FA maps in a region of the brain stem. (a): T1-weighted image showing the
zoom location (axial view). Color-FA maps and estimated tensors for (b/f): ISO, (c/g): d-ISO, (d/h):
SRR and (e/i): FMC-SRR. The color-FA for ISO is highly noisy, while the noise reduction technique
employed in d-ISO makes the structures fuzzy (region R1) and produces artifacts (R3). In SRR some
structures are missing due to the non-correction of distortion (R2). FMC-SRR provides the most detailed
structures (R1).

a better connectivity assessment. However, a number of streamlines remain disorganized
(regions R1 and R2). FMC-SRR (Fig.12d) outperforms the other approaches. Particularly,
streamlines in the frontal part (region R3) better represent the anatomy. Without distortion
correction (SRR, Fig.12b), the anisotropic scans were poorly aligned in the frontal region
(see Fig.8a,b) and the tracts prematurely stopped.

Finally, Fig.13 reports the tractography results for the pyramidal tracts and for the me-
dial cerebellar peduncle. The streamlines generated from ISO are strongly impacted by the
noise (Fig.13.a), while with d-ISO or SRR the medial cerebellar peduncle is poorly recov-
ered (Fig.13.b and c). FMC-SRR (Fig.13.d) provides the best results for the tractography
of both the pyramidal tracts and the medial cerebellar peduncle.
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(a) (b)

Figure 11: Assessment of the estimation uncertainty by averaging the FA variance from the residual boot-
strap in a 3-D region of interest. (a): region of interest considered, in the left external capsule. (b): average
of the FA variance in the ROI.

4. Discussion

Increasing the spatial resolution requires sampling of higher frequencies in k-space which
is very challenging in DWI. Sampling of a larger k space along each axis is difficult because
of (1) the dramatically lower SNR associated with a smaller voxel size, (2) the increased
spatial encoding limitations for the gradient coils, and (3) the increased TE, which in turn
leads to higher distortion and a lower SNR. Instead, we have proposed to employ anisotropic
orthogonal DWI acquisitions, which amounts to densely oversampling k-space along only two
axes (see Fig.14). First, this achieves a better SNR due to the larger voxel size. Second, this
reduces the spatial encoding burden for each scan. The underlying isotropic high-resolution
DW-images are then recovered in the image space with a super-resolution technique.

Because orthogonal DWI scans have different phase-encoding directions, they experience
different distortion patterns. We have proposed to compensate each acquisition for distortion
prior to the reconstruction. This is achieved by acquisition of a field-map (Jezzard and
Balaban, 1995), providing an estimate of the field inhomogeneity caused by susceptibility
changes at tissue interface, which is used to correct for the voxel mislocation. We have shown
that distortion compensation is essential when achieving the super-resolution reconstruction.
Without correction, overlapping voxels across acquisitions do not represent the exact same
brain location, which severely perturbs the reconstruction. It leads to blurred (Fig.9c-R2)
and missing (Fig.10d-R2) structures, even in regions not known to be strongly affected by the
susceptibility artifact. Ultimately, it leads to prematurely stopped tractography streamlines
(Fig.12c).

Our approach requires three DWI acquisitions that image the same gradient directions.
However, in case of patient motion during the scans, each triplet of DW-image may represent
different gradient directions in the patient coordinate system. We have taken into account
possible patient motion by aligning the volumes not only in space, but also in q-space.
Our super-resolution reconstruction technique is performed in the image space via a MAP
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Figure 12: Tractography results for the corpus callosum from (a): ISO, (b): d-ISO, (c): SRR and (d):
FMC-SRR.

formulation. It relies on a realistic image generation model that models the anisotropic DW
images we acquire as observations of an underlying isotropic high-resolution acquisition. Our
MAP formulation enables introduction of image priors to ensure regularized solutions, and
allows the estimation of the high-resolution DW images.

Based on numerical simulations and synthetic SRR scenarios, we have shown that the
SRR estimate outperforms the mean of the anisotropic acquisitions. The SRR led to high
contrast and less blurry gradient images (Fig.6a). We quantitatively showed an increase of
PSNR on the order of 6dB and 2dB for our two synthetic down-sampling scenarios (Fig.6b-
c). This led to a better reconstruction of the whole diffusion attenuation profile (Fig.7) and
ultimately to a better reconstruction of the whole diffusion tensor (Fig.5).

Based on real distortion compensated acquisitions, we have shown that the SRR outper-
forms the acquisition of a single isotropic scan for the same scan duration time. Acquisition of
a single isotropic acquisition led to a much lower SNR impacting the color FA (Fig.9a, 10b),
the FA (Fig.11), the estimation certainty (Fig.11) and the tractography (Fig.12a). Denois-
ing the isotropic acquisition (d-ISO) successfully corrected for noise (Fig.9a) and provided
a higher estimation certainty (Fig.11). However, it led to blurred structures (Fig.9b-R2,
Fig.10c/g), due to both the noise filtering and the interpolation necessary to resample the
1.5x1.5x1.5mm3 images to the resolution obtained by SRR (1.25x1.25x1.25mm3). Addi-
tionally, we observed artifacts caused by the interpolation with d-ISO (Fig.10c-R3). In
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Figure 13: Tractography results for the pyramidal tracts (vertical streamlines) and the medial cerebellar
peduncle, corresponding to a region close to the region in Fig.10, from (a): ISO, (b): d-ISO, (c): SRR
and (d): FMC-SRR.
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Figure 14: Employing anisotropic orthogonal acquisitions amounts to densely oversampling k-space along
only two axes.

contrast, FMC-SRR provided more detailed structures (Fig.9d-R2, Fig.10e/i). The two
columns in the brain stem (Fig.10e) were better separated because SRR enables sampling of
higher frequencies in k-space and consequently enables a better representation of fine edges.
The estimation uncertainty was low with FMC-SRR (Fig.11). Ultimately, FMC-SRR
provided the best tractography results (Fig.12d and 13d).

In this work, we acquired anisotropic acquisitions with high-resolution sampling along
two axes (rHR × rHR = 1.25 × 1.25mm2) and low resolution sampling along the last axis
(rLR = 2rHR = 2.5mm). The underlying high-resolution volumes were reconstructed at the
isotropic resolution rHR × rHR × rHR. We can observe that, with these settings, the super-
resolution reconstruction problem is overdetermined. As illustrated in Fig.15, this amounts

Figure 15: When using anisotropic acquisitions with the slice-thickness dimension twice the size of the in-
plane resolution, the SRR problem is over-determined. It amounts to estimating each group of eight voxels
of the high-resolution volume (right) from twelve measurements (left).
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to estimating each group of eight voxels of the HR volume from twelve measurements:
there are more observations than data to estimate. Interestingly, the maximum achievable
isotropic resolution riso × riso × riso when acquiring three orthogonal acquisitions with same
field of view and resolution rHR×rHR×rLR can be theoretically determined. It is defined by

riso =
(

rLR.r2HR

3

)1/3
. This corresponds to the case for which the number of voxels to estimate

matches exactly the number of observations.

There is a natural link between our approach and the compressive sensing (CS) tech-
niques (Lustig et al., 2007) which have emerged in the last decade. Compressive sensing
and sparse reconstruction in MRI are based on a random oversampling of k-space. In this
work, we have instead densely oversampled k-space by imaging with anisotropic acquisi-
tions. This has the advantage of imaging with a conventional SS-EPI acquisition, without
requiring modification of the scanner sequence, making the SRR approach widely accessible.
However, SRR and CS fundamentally differ in the way they reconstruct the images. In
sparse reconstruction methods, the images are recovered in k-space, making a number of
operations such as interpolation typically challenging. In our approach, we instead achieve
the reconstruction in the image space, based on an image generation model.

Future work will investigate the comparison of other EPI distortion correction techniques.
Perfect compensation of the distortion is indeed essential to ensure that overlapping voxels
in each acquisition represent the exact same brain location. This is well illustrated by Fig.10,
in which the distortion compensation provides a clear improvement, even for a region not
particularly known to be affected by the susceptibility artifact. The field-map unwarping is
effective for moderate distortion, but is known to be limited in highly distorted region in
which it is difficult to compute smooth phase maps. Particularly, we will investigate a hy-
brid approach combining deformable registration and field-map unwarping, which has been
reported to provide even better distortion compensation (Gholipour et al., 2011; Irfanoglu
et al., 2011).

We will investigate multiple enhancement to our SRR model. Particularly, introduc-
tion of novel priors such as the brain anatomy description provided by a high-resolution
T2 weighted scan may enable improved SRR in DWI. More realistic noise models such as
the non-central χ-distribution may better represent the noise properties, particularly when
using parallel imaging (Dietrich et al., 2008) as widely employed in DWI. Finally, alter-
native numerical optimization algorithms may speed up the convergence and offer a faster
reconstruction.

Using orthogonal anisotropic acquisitions enables sampling of higher frequencies in k-
space. However, the corners of the 3-D k-space are not sampled with this technique. These
regions of k-space could be sampled by acquiring more images, each appropriately rotated.

5. Conclusion.

This work is the first report that acquisition of anisotropic orthogonal acquisitions and
reconstruction of the underlying isotropic high-resolution acquisition with a super-resolution
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technique enables resolution enhancement in DWI. Particularly, the SRR outperforms the
results provided by a single isotropic acquisition for the same scan duration time. DWI with
SRR reveals more detailed fine structures because it samples higher frequencies in k-space.
Ultimately, SRR provides a better connectivity assessment. Importantly, such a technique
may enable DW imaging with unprecedented resolution. Indeed, the maximum isotropic
spatial resolution is intrinsically limited by the scanner hardware, depending on the magnetic
field strength and the strength and speed of the encoding gradients. By relaxing the spatial
encoding burden for each acquisition, SRR may enable DW imaging with resolution beyond
the limits dictated by the scanner hardware. SRR, which employs conventional SS-EPI
techniques, allows us to achieve DW imaging with higher spatial resolution to provide new
insight in neuroscience and clinical applications.
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