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Abstract. We consider a general modelling strategy to handle in a uni-
fied way a number of tasks essential to MR brain scan analysis. Our
approach is based on the explicit definition of a Conditional Random
Field (CRF) model decomposed into components to be specified accord-
ing to the targeted tasks. For a specific illustration, we define a CRF
model that combines robust-to-noise and to nonuniformity Markovian
tissue and structure segmentations with local affine atlas registration.
The evaluation performed on both phantoms and real 3T images shows
good results and, in particular, points out the gain in introducing reg-
istration as a model component. Besides, our modeling and estimation
scheme provide general guidelines to deal with complex joint processes
for medical image analysis.

1 Introduction

The analysis of MR brain scans is a complex task that requires several sources of
information to be taken into account and combined. The analysis is frequently
based on segmentations of tissues and of subcortical structures performed by
human experts. For automatic segmentation, difficulties arise from the presence
of various artifacts such as noise or intensity nonuniformities. For structures, the
segmentation requires in addition the use of prior information usually encoded
via a pre-registered atlas. Recently growing interest has been on tackling this
complexity by combining different approaches. As an illustration, Yang et al.
[1] propose to use a region based tissue classification approach followed by a
watershed algorithm to label brain sulci while Yu et al. [2] combine a region-
based bias field estimation and a level set method to segment the cortex. A
step further the combinaison of methods is coupling, giving the possibility to
introduce mutual interactions between components of a model. Such a coupling
can be naturally expressed in a statistical framework via the definition of joint
distributions. In this vein, Ashburner and Friston [3] couple a global statistical
tissue segmentation approach with the estimation of a bias field and a global
registration of an atlas of tissue probability maps. Another growing feature in
the literature is to locally estimate model parameters on the image to better
fit local image properties. For instance, Scherrer et al. [4] couple a local tissue



segmentation approach with a structure segmentation approach; Pohl et al. [5]
couple structure segmentation with the local affine registration of an atlas.
In this paper, we propose to go further towards coupling methods by constructing
a Conditional Random Field (CRF) model that performs a number of essential
tasks. We will focus on developing a statistical framework that allows 1) tissue
segmentation using local Markov Random Field (MRF) models, 2) MRF seg-
mentation of structures and 3) local affine registration of an atlas. All tasks are
linked and completing each one of them can help in refining the others. The
idea is to capture in a single model all the relationships that could be formalized
between these tasks. Our basis toward a solution is similar to that in [4] with the
major difference that therein a joint model was not explicitly given but defined
through the specification of a number of compatible conditional MRF models. In
this work, we specify directly a joint model from which the conditional models
are derived. As a result, cooperation between tissues and structures is treated in
a more symmetric way which results in new more consistent conditional mod-
els. In addition, interaction between the segmentation and registration steps is
easily introduced. An explicit joint formulation has the advantage to provide a
strategy to construct more consistent or complete models that are open to in-
corporation of new tasks. For estimation, we provide an appropriate variational
EM framework allowing a Bayesian treatment of the parameters. The evaluation
performed on both phantoms and real 3T brain scans shows good results and
demonstrates the clear improvement provided by coupling the registration step
to tissue and structure segmentation.

2 A CRF approach to segmentation and registration

We consider a finite set V of N voxels on a regular 3D grid. Our tissue and
structure segmentation task is recast into a missing data framework in which the
observed data y = {y1, . . . , yN} are the intensity values observed respectively at
each voxel and the missing data z = (t, s) is made of two sets: the tissue classes
t = {t1, . . . , tN} and the subcortical structure classes s = {s1, . . . , sN}. The tis
take their values in {e1, e2, e3} that represents the three tissues cephalo-spinal-
fluid, grey matter and white matter. Each ek is a 3-dimensional binary vector
whose kth component is 1, all other components being 0. For the subcortical
structure segmentation we consider L structures, the sis taking their values in
{e′1, . . . , e′L, e′L+1} where e′L+1 corresponds to an additional background class.
Tissues and structures are linked and we denote by T si the tissue of structure
si at voxel i. The model parameters θ = (ψ,R) include both the intensity distri-
butions parameters ψ and the registration parameters R. We consider them in
a Bayesian framework as realizations of random variables that take their values
in Θ = Ψ ×R.
To capture interactions between the various fields y, t, s and θ we adopt a
conditional random field approach which consists in specifying a conditional
model p(t, s, θ|y). We define p(t, s, θ|y) as a Gibbs measure with energy function
H(t, s, θ|y) ie. p(t, s, θ|y) ∝ exp(H(t, s, θ|y)) where the energy is decomposed
in the following terms. We denote by g(yi|ti, si, ψi) positive functions of yi and



consider the decomposition:

H(t, s, θ|y) = HT (t) +HS(s) +HT,S(t, s) +HT,R(t,R) +HS,R(s,R)

+HΨ (ψ) +HR(R) +
∑
i∈V

log g(yi|ti, si, ψi) . (1)

A number of essential tasks. In what follows, we show how the terms in (1)
can be specified so that the model performs the tasks listed below.
Robust-to-noise segmentation. Robust-to-noise segmentation is generally addres-
sed via MRF modelling. It introduces local spatial dependencies between vox-
els, providing a labelling regularization. For tissue and structure segmentations,
we use standard Potts models setting HT (t) =

∑
i∈V

∑
j∈N (i) ηT 〈ti, tj〉 and

HS(s) =
∑

i∈V

∑
j∈N (i) ηS 〈si, sj〉, where 〈·, ·〉 denotes the scalar product, N (i)

represents the voxels neighboring i and ηT and ηS are additional interaction
strength parameters.
Local approach to deal with nonuniformity. Generally, tissue intensity models are
estimated globally through the entire volume and then suffer from imperfections
at a local level. We adopt as in [4] a local segmentation alternative. The princi-
ple is to locally compute the tissue models in various subvolumes of the initial
volume. These models better reflect local intensity distributions and are likely to
handle different sources of intensity nonuniformity. We consider intensity models
that depend on the tissue class k but also on the voxel localization so that ψ de-
composes into ψ = {ψi, i ∈ V } where ψi = t(ψk

i , k = 1, 2, 3). Although possible
in our Bayesian framework, this general setting results in too many parameters
which could not be estimated accurately. The local approach [4] provides an in-
termediate efficient solution where the ψi’s are first considered as constant over
subvolumes. Let C be a regular cubic partionning of the volume V in a number
of nonoverlapping subvolumes {Vc, c ∈ C}. We write ψ = {ψc, c ∈ C} where
ψc = t(ψk

c , k = 1, 2, 3) is the common value of all ψi for i ∈ Vc. In addition to
ensure consistency and spatial regularity between the local estimations of the
ψc’s we consider a MRF prior p(ψ) ∝ exp(HΨ (ψ)). The specific form of HΨ (ψ)
is the same as in [4]. When Gaussian intensity distributions are considered, it
corresponds to assign auto-normal Markov priors to the mean parameters. Out-
side the issue of estimating ψ, having voxel dependent ψi’s is not a problem.
We easily go back to this case, from estimated ψc’s, by using a cubic splines
interpolation step.
Incorporating a priori knowledge via local affine atlas registration. The a priori
knowledge required for structure segmentation is classically provided via a global
non-rigid atlas registration. Most methods first register the prior information to
the medical image and then segment the image based on that aligned informa-
tion. Although reliable registration methods are available, it is still important,
in the subsequent segmentation task, to overcome biases caused by commitment
to the initial registration. Also segmentation results provide information that
can be used for feedback on registration. Global registration approaches gener-
ally lead to a high dimensional minimization problem which is computationally
greedy and subject to a high number of local optima. We rather choose a hierar-



chical local affine registration model as in [5]. We consider 1) a global affine
transformation given by parameters RG, which describes the non structure-
dependent deformations, and 2) one local affine structure-dependent deforma-
tion for each structure, defined in relation to RG and capturing the residual
structure-specific deformations. It follows L+2 affine transformation parameters
R = (RG,RS

1 , . . . ,RS
L+1) to be estimated. Interactions between labels and regis-

tration parameters are introduced throughHT,R(t,R) andHS,R(s,R). Similarly
to [5], the interaction between S and R is chosen so as to favor configurations for
which the segmentation of a structure l is aligned on its prior atlas. We denote by
ζS = {ζl

S , l = 1, . . . , L+1} the statistical atlas of the brain subcortical structures
under consideration and by ρ(RG,RS

l , i) the interpolation function assigning a
position in the atlas space to the image space. We compute the spatial a priori
distribution f l

S(R, ·) of one structure l by f l
S(R, i) =

ζl
S(ρ(RG,RS

l ,i))∑
l′=1..L+1 ζl′

S
(ρ(RG,RS

l′ ,i))
. The

normalization across all structures is necessary as RS
l are structure-dependent

parameters and multiple voxels in the atlas space could be mapped to one lo-
cation in the image space. Although some atlas are potentially available for
tissues, in our setting we build fT , the spatial a priori distribution of the K = 3
tissues, from the f l

S ’s: fk
T (R, i) =

∑
l st.T l=k f

l
S(R, i)+ 1

K
fL+1

S (R, i). Agreement be-
tween structure segmentation and atlas is then favored by setting HS,R(s,R) =∑

i∈V 〈si, log (fS(R, i) + ε)〉, with the vectorial notation fS = t(f1
S , . . . , f

L+1
S ).

The logarithm and a positive scalar ε are introduced respectively for homogeneity
between probabilities and energies, and to ensure the existence of the logarithm.
We choose ε = 1, making in addition HS,R(s,R) positive, but the overall method
does not seem sensitive to its exact value. Similarly, we define the interaction
between t and R by HT,R(t,R) =

∑
i∈V 〈ti, log (fT (R, i) + ε)〉. Then, the term

HR(R) can be used to introduce a priori knowledge to favor estimation of R
close to some average registration parameters computed from a training data set
if available. In our case, no such data set were available and we set HR(R) = 0.
Cooperative tissue and structure segmentations. Tissues and structures are linked:
a structure is made of a specific tissue and knowledge on structures locations
provides information for tissue segmentation. Inducing cooperation between tis-
sue and structure segmentations can be done through the term HT,S(t, s). We
set HT,S(t, s) =

∑
i∈V 〈ti, eT si 〉, so as to favor situations for which the tissue T si

of structure si is the same as the tissue given by ti. Cooperation between tis-
sue and structure labels also appear via the energy data term

∑
i∈V

g(yi|ti, si, ψi).

Considering Gaussian intensity distributions, we denote by G(·|µ, λ) the Gaus-
sian distribution with mean µ and precision λ (i.e. the inverse of the variance).
Denoting ψk

i = {µk
i , λ

k
i }, we see ψi as a 3-dimensional vector, so that when

ti = ek, then G(yi|〈ti, ψi〉) denotes the Gaussian distribution with mean µk
i

and precision λk
i . To account for both tissue and structure information, we set:

g(yi|ti, si, ψi) = G(yi|〈ti, ψi〉)
1+〈si,e′L+1〉

2 G(yi|〈eT si , ψi〉)
1−〈si,e′L+1〉

2 . When tissue
and structure segmentations contain the same information at voxel i, ie. either
ti = eT si or si = e′L+1, then the expression of g above reduces to the usual



G(yi|〈ti, ψi〉). When this is not the case, the expression of g above leads to
G(yi|〈ti, ψi〉)1/2G(yi|〈eT si , ψi〉)1/2 which is a more appropriate compromise.

3 A Bayesian EM estimation framework
We consider the EM algorithm and more specifically its Maximization-Maximiza-
tion interpretation as a general estimation technique in the presence of missing
data. Let T and S be respectively the spaces in which t and s take their values.
We denote by D the set of probability distributions on Z = T ×S. In a Bayesian
framework, EM can be used to find Maximum A Posteriori (MAP) estimations
(see eg [6]) and leads to the alternating maximization over q ∈ D and θ ∈ Θ of the
function defined by FMAP(q, θ) =

∑
z∈Z log p(y, z | θ) q(z)+log p(θ)+I[q], where

I[q] = −Eq[log q(Z)] is the entropy of q (Eq denotes the expectation with regard
to q and capital letters indicate random variables while small letters denote their
realizations). However, the dependencies between the missing data usually make
the optimization over D intractable. We then propose to use a Variational EM
approach [7] in which the E-step is not performed exactly. The optimization
is solved over a restricted class of probability distributions which factorize as
q(t, s) = qT (t) qS(s) where qT (resp. qS) belongs to the set DT (resp. DS) of
probability distributions on T (resp. on S). Further generalizing by dividing the
approximate E-step into two stages, it follows a variant that falls in the modified
Generalized Alternating Minimization (GAM) procedures family [8]. From the
definition of FMAP , we therefore derive a 3-steps algorithm. At iteration r + 1,
with current estimates denoted by q(r)T , q(r)S and θ(r), it consists of:

E-T-step: q
(r+1)
T = arg max

qT∈DT

EqT [E
q
(r)
S

[log p(T|S,y, θ(r))]] + I[qT ] (2)

E-S-step: q
(r+1)
S = arg max

qS∈DS

EqS [E
q
(r+1)
T

[log p(S|T,y, θ(r))]] + I[qS ] (3)

M-step: θ(r+1) = arg max
θ∈Θ

E
q
(r+1)
T

q
(r+1)
S

[log p(θ|T,S,y)] . (4)

Equations (2-4) show that for inference the specification of the three condi-
tional distributions p(t|s,y, θ), p(s|t,y, θ) and p(θ|t, s,y) is sufficient. These
models can be easily deduced from the conditional distribution p(t, s, θ|y) con-
firming that there is no need to define the complete joint model p(t, s,y, θ)
and emphasizing the rational of using a CRF approach for segmentation pur-
pose. Moreover, the model definition in (1) induces that the conditional models
p(t|s,y, θ) and p(s|t,y, θ) are MRF with energy functions denoted byH(t|s,y, θ)
and H(s|t,y, θ) obtained by omiting in expression (1) the terms that do not de-
pend on t, resp. on s. The two-stage E-step (2) and (3) requires then to compute
H

(r+1)
T (t) = IE

q
(r)
S

[H(t|S,y, θ(r))] and H
(r+1)
S (s) = IE

q
(r+1)
T

[H(s|T,y, θ(r))]. Ne-
glecting terms not depending on t, it comes:

H
(r+1)
T (t) =

∑
i∈V

[
〈ti, log(f̃

(r)
T (R(r), i))〉 +

∑
j∈N (i)

ηT 〈ti, tj〉 + log (gTi(yi|ti))
]
, (5)

where gTi(yi|ti) = G(yi|〈ti, ψ(r)
i 〉)

1+q
(r)
Si

(e′L+1)

2 and f̃
(r)
T = t(f̃k(r)

T , k = 1, 2, 3) with
f̃

k(r)
T defined by log(f̃k(r)

T (R, i)) = log(fk
T (R, i) + ε) +

∑
l st.T l=k q

(r)
Si

(e′l) . In the
latter expression, the term

∑
l st.T l=k q

(r)
Si

(e′l) is the probability, given the current



distribution q(r)Si
, that voxel i belongs to a structure whose tissue is k. Intuitively,

the higher this probability the more favored is tissue k. Similarly,
H

(r+1)
S (s) =

∑
i∈V

[
〈si, log(f̃

(r)
S (R(r), i))〉 +

∑
j∈N (i)

ηS 〈si, sj〉 + log (gSi(yi|si))
]
, (6)

where gSi(yi|si) =
( ∏3

k=1 G(yi|ψk(r)
i )

q
(r+1)
Ti

(ek)) 1+〈si,e′L+1〉
2 G(yi|〈eT si , ψ

(r)
i 〉)

1−〈si,e′L+1〉
2

and log f̃ l(r)
S (R, i) = log(f l

S(R, i)+ε)+q(r+1)
Ti

(eT l)(1−〈e′l, e′L+1〉) where the term
q
(r+1)
Ti

(eT l)(1−〈e′l, e′L+1〉) favors a structure whose tissue is T l if l is a proper struc-
ture. We recognize in (5) and (6) the standard decomposition of a MRF model
into three terms: an external field, a regularizing spatial term and a data term.
Then, solving the current E-T and E-S steps is equivalent to solve the segmenta-
tion task for standard MRFs whose definition depends on the previous iteration.
In this work we consider a Mean field like algorithm to actually compute q(r+1)

T

and q(r+1)
S but any other MRF estimation strategy could be possible.

The independence of ψ and R then leads to a two-stage M-step M-ψ and M-R.
For the M-ψ step, the choice of a Markovian prior energyHΨ (ψ) as in [4] requires
the use of a Mean Field like approximation for the maximization. Similarly to
[4], we update the ψk

c = {µk
c , λ

k
c}’s with the values obtained at convergence of

the following scheme ((ν) denotes the iteration number):

M-ψ :
µ

k(ν+1)
c =

λk(ν)
c

∑
i∈Vc

aikyi+λ0k
c |N (c)|−1 ∑

c′∈N(c) µ
k(ν)
c′

λ
k(ν)
c

∑
i∈Vc

aik+λ0k
c

λ
k(ν+1)
c =

αk
c +

∑
i∈Vc

aik/2−1

bk
c +1/2[

∑
i∈Vc

aik(yi−µ
k(ν+1)
c )2]

,

where {λ0k
c , αk

c , b
k
c , c ∈ C} are hyperparameters to be specified, N (c) denotes

the indices of the subvolumes neighboring subvolume c, |N (c)| the number of
them and aik = 1

2

(
qTi(ek) + qTi(ek)qSi(e

′
L+1) +

∑
lst.T l=k qSi(e

′
l)

)
. The first term

in aik is the probability for voxel i to belong to tissue k without any structure
knowledge. The sum over k of the two other terms is one and they can be inter-
preted as the probability for i to belong to the tissue class k when information
on structure segmentation is available. Parameter values per voxel are then com-
puted by cubic splines interpolation between ψc and ψc′ for all c′ ∈ N (c) so that
smooth variations between neighboring subvolumes are ensured and the intensity
nonuniformity is handled inside each subvolume. For the M-R step, we get from
(4), R(r+1) = arg maxR∈R

(
H(R) + E

q
(r+1)
T

[HT,R(T,R)] + E
q
(r+1)
S

[HS,R(S,R)]
)
. In

practice, the global parameters RG are determined in a pre-processing step using
some standard intensity based method such as FLIRT4. For the other transfor-
mations, we adopt a relaxation approach and update the 12 parameters defining
each local affine transformation RS

l by maximizing in turn:

M-R :

RS (r+1)
l = arg max

RS
l

(
H(R) +

∑
i∈V

3∑
k=1

q
(r+1)
Ti

(ek) log
(
fk

T (R, i) + ε
)

+
∑
i∈V

L+1∑
i=1

q
(r+1)
Si

(e′l) log
(
f l

S(R, i) + ε
) )

.

There exists no simple expression and the optimization is performed numerically
using a variant of the Powell algorithm.
4 http://www.fmrib.ox.ac.uk/fsl/flirt/



Fig. 1. Evaluation on IBSR v2 (9 right structures) and comparison with [9].

(a) (b) (c)

Fig. 2. (a) Evolution of hippocampus local affine registration and segmentation; (b)
Evolution of the caudate atlas registration and segmentation after an artificial pertur-
bation of the initial registration; (c) Tissue segmentations with T and TSR approaches.

4 Evaluation

We chose to set parameters ηT and ηS to the inverse of a decreasing temperature
as generally done. The precision parameters λ0k

c were set to Ncλ
k
g where Nc

is the number of voxels in c and λk
g is a rough precision estimation for class

k obtained by a standard global EM algorithm. The αk
c ’s were set to |N (c)|,

bkc to |N (c)|/λk
g and the tissue subvolumes size to 203 voxels. The atlas used

was the Harvard-Oxford subcortical probabilistic atlas. For a fair comparison,
we first carried out tissue segmentation only. The results were equivalent to
that in [4] and quantitatively comparable to the results from FAST and SPM5
for lower computational times. They showed robustness both to noise and to
nonuniformities. We then rather focused on evaluating the coupling performance.
We computed via STAPLE a 3-structure BrainWeb gold standard from three
manual expert segmentations of the left caudate, left putamen and left thalamus.
When combining tissue and structure segmentations (TS approach), the mean
Dice metric over 8 experiments (phantoms with 3%, 5%, 7%, 9% of noise, and
20% or 40% of nonuniformity) was respectively 74%, 90% and 90% for the three
structures (computational time: 25 min on a Pentium 2Ghz, 2Go RAM). When
adding registration in the combination (TSR approach), it reached respectively
91%, 95% and 94% (computational time: 50 min), showing great improvement
for the caudate whose atlas was initially badly registered. Comparatively, [4]
reported respectively 74%, 85% and 91%. We then considered 18 images from
the IBSR v2 database. The mean Dice metric for the 9 right structures (17 were
segmented) is reported in Fig. 1). Most structure segmentations were improved



by the introduction of registration in the coupling (mean improvement: +4.5%
; mean degradation: -1.2%). Then Fig. 2 shows the results for a real 3T brain
scan. Fig. 2(a) illustrates how registration and structure segmentation improve
with iterations while in Fig. 2(b), the initial caudate registration was perturbed
artificially to point out the ability of our approach to correct the mis-alignment
and recover a correct segmentation. Eventually, Fig. 2(c) shows that the final
tissue segmentation is much better with the TSR approach.

5 Discussion
Our approach provides general guidelines to deal with complex joint processes.
It is based on the initial specification of a joint probabilistic model decomposed
into parts to account for various type of interactions. We used this strategy to
integrate an atlas registration with a tissue and structure segmentation process.
We proposed a model that captures several level of interactions 1) spatial depen-
dencies between voxels for robustness to noise, 2) spatial dependencies between
local intensity models to ensure their consistency, 3) relationships between tis-
sue and structure labels and 4) relationships between labels and local affine atlas
registration parameters. In addition to the inclusion of registration, we built on
the approach in [4] by introducing new tissue and structure interaction terms.
As a result of the joint approach, these new terms correspond to a more sym-
metric cooperation between tissues and structures. Besides, we obtained very
good results that confirmed the benefits of allowing symmetric interactions and
including registration as part of the model components rather than as a separate
step. Further refinements include the introduction of an a priori H(R) for the
registration and the addition of a sulci lines segmentation process. We believe
the use of training data as in [5] will facilitate registration parameters estimation
and further improve the results. Also, interactions between sulci lines and tissue
segmentation could reduce the over-regularization effect of MRF around sulci.
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