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Abstract. Diffusion-weighted imaging (DWI) enables non-invasive in-
vestigation and characterization of the white-matter but suffers from a
relatively poor resolution. In this work we propose a super-resolution
reconstruction (SRR) technique based on the acquisition of multiple
anisotropic orthogonal DWI scans. We address the problem of patient
motions by aligning the volumes both in space and in q-space. The SRR
is formulated as a maximum a posteriori (MAP) problem. It relies on
a volume acquisition model which describes the generation of the ac-
quired scans from the unknown high-resolution image. It enables the in-
troduction of image priors that exploit spatial homogeneity and enables
regularized solutions. We detail our resulting SRR optimization proce-
dure and report various experiments including numerical simulations,
synthetic SRR scenario and real world SRR scenario. Super-resolution
reconstruction in DWI may enable DWI to be performed with unprece-
dented resolution.
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1 Introduction

Diffusion-weighted imaging (DWI) is a key imaging technique to investigate and
characterize the white-matter architecture and microstructure. It is based on the
acquisition of several diffusion-sensitized images, probing the water diffusion in
various directions and at various diffusion scales. DWI is, however, strongly lim-
ited by the relatively low resolution achievable by today’s imaging techniques:
while individual axon diameter is on the order of 1-30µm, typically achievable
DWI resolution is on the order of 2x2x2mm3. Anisotropic acquisitions with a
better in-plane resolution (up to 1x1mm2) can be performed on modern scanners
but lead to a lower signal to noise ratio (SNR) and are not adapted to further
perform tractography. Consequently, due to strong partial volume effect, DWI
has been limited to the investigation of the major fiber ”highways” in the brain.
Increasing the resolution of DWI acquisitions holds out the potential to allow
investigation of novel fiber structures and will enable a more accurate white-
matter and brain connectivity assessment. However, increasing the resolution is
challenging in DWI. First, the common anatomical imaging resolution enhance-
ment techniques, based on the modification of the pulse sequence, cannot be
employed in DWI. The data of a same slice cannot be acquired over many ex-
citations due to phase inconsistencies resulting from even minimal physiological
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motion during the application of the sensitizing gradients. Second, the SNR is
directly proportional to the voxel size, and proportional to the square root of the
number of averages. Consequently, 64 averages are necessary to increase the res-
olution from 2x2x2mm3 to 1x1x1mm3 while ensuring a similar SNR. A 5 minute
acquisition would become a 5 hour scan, which is not realistic.
Solutions to achieve higher resolution include improvements of the MRI scanner
hardware itself, such as employing higher magnetic fields (7 Tesla, 11 Tesla) or
stronger and faster gradients. Another solution is to consider adapted acqui-
sitions and post-processing algorithms. Super-resolution (SR) approaches were
originally developed for the reconstruction of high-resolution (HR) images from a
set of low-resolution (LR) images in video sequences [6]. SR techniques have also
been applied to anatomical magnetic resonance imaging (MRI) [4]. Calamante et
al. [1] have explored the application of interpolation of fiber tracts inside voxels
but do not increase the resolution of the imaging data. To our knowledge, only
[9] have used SR in DWI. They proposed to employ the Irani-Peleg SR technique
[6] from a set of spatially in-plane subpixel-shifted scans. However, MRI being
a Fourier acquisition technique, employing in-plane shifting has been shown to
be equivalent to a global phase shift in k-space [3]. Such a technique does not
enable any resolution enhancement in MRI but is equivalent to interpolation by
zero-padding of the raw data in the temporal domain. Recently, sub-voxel spatial
shifts in the slice-select dimension have been shown to enable SR in anatomical
MRI [4]. Scattered data interpolation has been used to combine multiple DWI
images of moving subjects [7]. Other techniques using multiple and orthogonal
fast slice scans have enabled the SR reconstruction of moving subjects in fetal
imaging [2].

In this work we propose to investigate a novel super-resolution reconstruction
(SRR) approach for DWI. It is based on the acquisition of multiple anisotropic
orthogonal DWI scans (see Fig.1a). First, we propose a technique to align each
volume both in space and in q-space. Second, we formulate the super-resolution
reconstruction from multiple scans as a maximum a posteriori estimation prob-
lem. Inspired by recent developments in fetus anatomical imaging [2], our ap-
proach relies on an image acquisition model. It describes the generation of the
acquired volumes from the unknown HR volumes we aim to recover. Our for-
mulation enables introduction of image priors that exploit spatial homogeneity
and provide regularized solutions. We report various experiments including nu-
merical simulations, synthetic SRR scenario and real world SRR scenario. The
results indicate resolution enhancement in DWI through SRR.

2 Material and Methods

DW signal smoothness hypothesis and interpolation in q-space. We con-
sider K orthogonal DWI LR acquisitions containing G sensitizing-gradients each.
The KG volumes should all be properly aligned to enable the super-resolution
reconstruction. First we perform an alignment in space: we register each volume
to a reference volume, chosen as the B = 0s/mm2 volume of the first DWI LR
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(a) (b)

Fig. 1. (a) Scheme illustrating the super-resolution reconstruction from the acquisition
of two orthogonal thick slices. (b) Alignment in q-space: the gradient images of each
acquisition k > 1 are resampled so that its gradient directions gk (red dots arrows)
correspond to the reference gradient directions of the first acquisition g̃ (grey plain
arrows). At each voxel, we compute novel intensities corresponding to the gradients g̃
by interpolation in q-space from the observed intensities corresponding to gk.

acquisition. Each gradient orientation is compensated for the rotation compo-
nent of the transformation, providing a gradient set gk = (gk1 , . . . , g

k
G) for each

acquisition k.
Because of possible patient motions between the scans, the resulting G gradient
images may correspond to slightly modified sensitizing gradients across the K
DWI acquisitions. However, it is essential that the images combined by the SRR
technique correspond to the same “scene”, namely that they correspond to the
exact same gradient direction and show identical diffusion-attenuation patterns.
Consequently, we propose to perform an alignment of the volumes in q-space (see
Fig.1b). We consider that the DW-signal varies smoothly in q-space and propose
to resample the gradient images. We consider the gradients of the first DWI LR
acquisition as the reference gradients g̃ = g1. We align in q-space each other
k ≥ 2 DWI acquisition so that their gradients exactly match g̃. This is done by
using interpolation in q-space. At each voxel, we consider the G intensity values
corresponding to the gradients gk. We then compute the new intensity values
corresponding to the gradients g̃. The interpolation is performed via Kriging [8],
a general and efficient statistical interpolation framework originally introduced
for geology and mining applications. This enables us to easily perform scattered
data interpolation. It determines the weights of the contribution of each observed
data via the resolution of a simple linear system. In the absence of motion (i.e.
a gradient gj exactly matches a gradient g̃j′), the interpolated intensity match
exactly the observed intensity. As a result, the K LR acquisitions are all aligned
in space and represent the same sensitizing-gradient set g̃.

Super-resolution model-based reconstruction. In this section each LR
volume is considered to be aligned in space and in q-space. The SRR tech-
nique we now address is performed for each gradient image separately. For each
gradient g̃j , we aim to recover the HR image xj underlying the K LR images
yj = (y1,j , . . . ,yK,j). By omitting the gradient dependency to simplify the no-
tations, we consider the K LR volumes y = (y1, . . . ,yK) to be the degraded
version of the same unknown HR volume x. x is estimated according to the
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maximum a posteriori principle, by maximizing:

x̂MAP = arg max
x

p(x|y) = arg max
x

p(y|x)p(x) = arg max
x

[ln p(y|x) + ln p(x)] , (1)

which decomposes into a likelihood term and a prior term.
Likelihood term p(y|x): we consider a model describing how the LR volumes are
obtained from the unknown HR volume. In a trade-off between a realistic model
and a feasible solution, we consider the following acquisition model:

yk = DkBkMkx + εk , (2)

where the volumes yk and x are expressed as column vectors by a lexicographi-
cal reordering of the pixels, Dk is a down-sampling matrix, Mk is the warping
matrix that maps the HR volume x to the LR volume yk and εk is the residual
noise vector. Bk is the blur, or point spread function (PSF) of the MRI signal
acquisition process. It is constructed from the imaging parameters. The PSF can
be separated into three components corresponding to the slice-selection direc-
tion and the phase- and frequency-encoding directions. As in [3], we currently
consider a PSF in the slice-selection direction only, which describes the slice se-
lection profile. We consider a Gaussian slice selection profile of variance σ2

PSF.
Consequently, on the basis of Eq.2, the unknown HR volume x goes through
geometric and signal operations, including motion, signal averaging, and resam-
pling, to generate the acquired LR volume yk. Assuming a Gaussian noise with
zero-mean and variance σk for εk, the likelihood of the LR volume yk under the
model in Eq.2 can be written as:

p(yk|x, σk) =
1

σk
√

2π
exp

(
−||yk −DkBkMkx||2

2σ2
k

)
. (3)

Assuming statistical independence of the noise between the acquisitions, we have
p(y|x, σ) =

∏K
k=1 p(yk|x, σk) with σ = (σ1, . . . , σK).

Prior term p(x): the term p(x) in Eq.1 enables us to incorporate a prior knowl-
edge on x. In this work we consider a regularization prior that exploits spatial
homogeneity. More precisely, we favour smoothness of x by setting p(x|λ) =

exp(−λ||Qx||2) where the matrix Q is symmetric definite positive and repre-
sents a linear high-pass operation. The parameter λ controls the regularization
strength. In this work, Q is chosen as the 3-D discrete Laplacian corresponding
to the following approximation of the partial derivative for a 3-D image I indexed
by u ∈ IN3, and for a direction um ∈ IN3 (m ∈ {1, 2, 3}):

∂mI(u) ≈
(
I(u + um)− 2I(u) + I(u− um)

)
/(2||um||). (4)

Ultimately, by considering the same σk across acquisitions, maximization of
the posterior distribution in Eq.1 leads to the following minimization:

x̂ = arg min
x

K∑
k=1

||yk −DkBkMkx||2 + λ||Qx||2 . (5)
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DWI-SRR optimization procedure. The matrix DkBkMk is especially
large and the classical solution through pseudo-inverse is prohibitive. Instead we
use a steepest descent iterative minimization approach. Differentiation of Eq.5
leads to the following update at each step:

x̂n+1 =x̂n − α

[
K∑

k=1

MT
kB

T
kD

T
k (DkBkMkx̂

n − yk)− λQTQx̂n

]
, (6)

where α is the step size and MT
k denotes the transpose of Mk. The iterative

algorithm is initialized by setting x̂0 equal to the mean of the aligned LR vol-
umes. The iterative minimization is stopped when ||x̂n+1 − x̂n||1 < TSTOP. The
DWI-SRR optimization procedure is synthesized by the following pseudo-code:

FOR each LR study k
FOR each gradient image of k

MT
k ← Register to the reference volume

Apply the transform to the gradient
ENDFOR

ENDFOR
FOR each output gradient gg

FOR each LR study k
yk ← Compute the gradient image for gg (q-space interpolation)

ENDFOR
Compute x̂0 ← Mean of the MT

k D
T
k yk

WHILE ||x̂n − x̂n−1||1 ≥ TSTOP

x̂n+1 ← Update with Eq. 6
ENDWHILE

ENDFOR

3 Results

The SRR procedure was implemented in C++ and optimized with various tech-
niques to reduce the processing burden. The MT

kB
T
kD

T
kDkBkMk and

MT
kB

T
kD

T
k yk matrices were precomputed, and the derivative of the Laplacian

corresponding to the finite difference scheme in Eq.4 computed analytically. To
accelerate the convergence, the steepest descent algorithm was implemented with
a variable per-voxel step-size α which incorporates inertia: the step-size is mul-
tiplied by 1.1 when the sign of two consecutive computed gradient does not
change, and divided by two otherwise. α is initialized to 0.01 and constrained to
lie in

[
0.1, 10−6

]
. The FWHM for the Gaussian slice model was set to half the

slice thickness, by setting σPSF = (slice thickness)/(4
√

2 ln 2). Other parameters
were set to λ = 0.001 and TSTOP = 10−5.
Numerical simulations. We first performed numerical simulations. The DW-
signal for tensors (see Fig.2a) was simulated with a b-value of 1000s/mm2 for
15 directions, and corrupted by Rician noise (SNR of 30dB for the b=0s/mm2

image). Linear down-sampling with a factor of 4 was applied to each gradient
image in each of the three directions, providing three simulated LR acquisitions.
Various tensor estimation were performed (see Fig.2b-d), and the corresponding
fractional anisotropy (FA) computed (Fig.2e-g) (ground truth FA=0.8).
Synthetic SRR scenario. We then simulated a SRR scenario by down-sampling
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Numerical simulations from the tensors of Fig.a. Fig.b-d: Tensors estimated
resp. from a single LR acquisition, from the mean of the LR acquisitions and from the
SRR. Fig.e-g: Corresponding tensor fractional anisotropy. It shows the tensor directions
to be well estimated from the mean (Fig.c). However, the SRR provides a much more
accurate reconstruction of the complete tensor (see the better FA uniformity in Fig.g).

(a) (b) (c)

Fig. 3. Fig.a: Synthetic SRR scenario from a real acquisition. a.a: b=0 image. a.b:
Axial down-sampled b=0 image with a factor of 4. a.c: Mean of the b=0 images of the
LR acquisitions. a.d: SRR of the b=0 image. The SRR is better contrasted and is less
blurry than the mean. Fig.b and Fig.c: Quantitative evaluation of the reconstruction
accuracy in term of PSNR for the /2 and /4 down-sampling, for each gradient direction.

in each of the three directions a real DWI acquisition (Siemens 3T Trio, 32 chan-

nel head coil, 68 slices, FOV=220mm, matrix=128x128, resolution=1.7x1.7x2mm3,

TE=86ms/TR=8800ms, 30 directions at B=1000s/mm2, 5 B=0s/mm2). A down-
sampling of factor 2 and 4 were considered. The SRR at the original resolution
was estimated and qualitatively compared to the original image (see Fig.3a). The
SRR estimation time was approximately 2 hours on a 3Ghz Intel Xeon (3 to 4min
per gradient image). Fig.3b-c report, for each gradient direction, the Peak Signal
to Noise Ratio (PSNR) with the original acquisition. The PSNR is defined by
20 log10(MAX/

√
MSE) with MAX the maximum intensity and MSE the mean

square error. Fig.4 synthesizes, for four voxels, the error with the ground-truth
for all the gradient directions via a 3-D angular reconstruction.
Real SRR scenario. Finally, we performed the acquisition of three anisotropic
DWI scans (same parameters as before, except: 1.6x1.6mm2 in-plane res., 5mm slice
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Fig. 4. 3-Dimensional angular reconstructions of the diffusion signal at four voxels
whose position is shown on the b=0s/mm2 image (left image). The voxels were cho-
sen to have a high FA (FA > 0.9). The obtained 3-D shapes are proportional to the
apparent diffusion coefficient (ADC). Comparison between the 3-D reconstruction per-
formed from the mean image (first line) and from the SRR estimate (second line). The
stick indicates the major fiber direction estimated by a single-tensor model. The color
encodes for the error with the ground-truth (difference in image intensity). It shows
the SRR estimate to provide a much better reconstruction for each gradient image.

(a) (b) (c) (d)

Fig. 5. Real SRR scenario. Fig.a-b: FA computed from the mean of the LR acquisition
(a) and from the SRR (b). Fig.c-d: idem for MD. It shows that the SRR leads to more
contrasted and less blurry FA and MD estimates.

thickness, 38 slices, TE/TR=87/4700ms) and achieved the reconstruction at 1.6x1.6x
2.5mm3. Fig.5 shows the FA and the mean-diffusivity (MD) computed from the
mean of the LR acquisitions and from our SRR technique. As in Fig.2, the images
are less blurry and more contrasted when employing our SRR technique.

4 Discussion

We have proposed a novel SRR technique for DWI based on the acquisition of
orthogonal anisotropic DWI scans. To our knowledge, it is the first attempt to
perform SRR in DWI in the last decade, since [9]. In contrast to [9], we take into
account possible patient motions by aligning the volumes in both space and q-
space. In addition, we formulate the SRR as a MAP estimation problem. For each
gradient, we estimate the underlying unknown HR volume given the acquired LR
DWI scans. Our formulation enables us to integrate an image acquisition model
and to integrate image priors. We have shown that the SRR estimate outperforms
the mean of the LR acquisitions, providing a better contrast and less blurry
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results for the gradient images (Fig.3a) and for diffusion parameters such as the
FA or the MD (Fig.2 and Fig.5). The quantitative evaluation showed an increase
of PSNR on the order of 6dB and 2dB for our two synthetic down-sampling
scenarios (Fig.3b-c). In future work, we will evaluate the benefits of correcting
for the geometric distortions. Indeed, the acquisitions show locally very different
geometric distortion patterns due to different phase-encoding directions. As a
result, accurate alignment of the images is difficult, which can locally perturb the
SRR. We will investigate the effectiveness of employing a distortion correction
technique by acquisition of a magnetic field map [10] or by the acquisition of
two DWI scans with reversed phase directions [5]. Finally, we will investigate
the introduction of novel priors. Particularly, incorporating the brain anatomy
description provided by a HR T2-w scan may enable improved SRR in DWI.

SRR techniques are of great interest for medical imaging because they enable
us to go beyond the limits dictated by the hardware. With today’s scanners,
they may enable routine HR investigation of the brain white-matter in clinically
compatible scan time. Combined with future MRI hardware improvements, they
may enable DWI to be performed with unprecedented resolution.
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