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Abstract. Diffusion-weighted imaging (DWI) enables investigation of
the brain microstructure by probing natural barriers to diffusion in tis-
sues. In this work, we propose a novel generative model of the DW signal
based on considerations of the tissue microstructure that gives rise to the
diffusion attenuation. We consider that the DW signal can be described
as the sum of a large number of individual homogeneous spin packets,
each of them undergoing local 3-D Gaussian diffusion represented by
a diffusion tensor. We consider that each voxel contains a number of
large scale microstructural environments and describe each of them via
a matrix-variate Gamma distribution of spin packets. Our novel model of
DIstribution of Anisotropic MicrOstructural eNvironments in DWI (DI-
AMOND) is derived from first principles. It enables characterization of
the extra-cellular space, of each individual white matter fascicle in each
voxel and provides a novel measure of the microstructure heterogeneity.
We determine the number of fascicles at each voxel with a novel model
selection framework based upon the minimization of the generalization
error. We evaluate our approach with numerous in-vivo experiments,
with cross-testing and with pathological DW-MRI. We show that DIA-
MOND may provide novel biomarkers that captures the tissue integrity.

1 Introduction

Diffusion-weighted imaging (DWI) enables investigation of the brain microstruc-
ture by probing natural barriers to diffusion in tissues. Because the DWI spacial
resolution is typically on the order of 6−27mm3, the measured DW signal in each
voxel combines the signal arising from a variety of heterogeneous microstructural
environments including multiple cell types, sizes, geometries and orientations
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Fig. 1. Multiple scales of intra-voxel heterogeneity are responsible for the observed non-
monoexponential decay (Ax: axons with various degrees of myelination; As: Astrocyte;
O: Oligodendrocyte). (a): Large scale heterogeneity includes the mixing of large scale
microstructural environments (LSME) such as the mixing of multiple WM fascicles
with extra-cellular space. (b): Furthermore, each LSME may contain a complex varying
microstructure such as axons with varying radii and degrees of myelination. (c): At an
even smaller scale, other biophysical mechanisms such as intracellular heterogeneities
and the proximity of cell membranes that locally restricts motion may contribute to
the signal decay behavior. For example, Sehy et al. [8] observed a non-monoexponential
decay within the intracellular space of a single cell, the frog oocyte.

and extra-cellular space. This is well known to give rise to an overall observed
non-monoexponential decay [9,1,7,10]. Multiple models have been proposed to
account for the observed non-monoexponential decay. Among them, generative
models focus on modeling the biophysical mechanisms underlying the MR sig-
nal formation and are of great interest to characterize the white-matter (WM)
microstructure. In this context, Assaf et al. [1] proposed in CHARMED to rep-
resent the intra-axonal diffusion with a model inspired by the analytic diffusion
in impermeable cylinders, which however required b-values up to 10000s/mm2

to distinguish between multiple fascicles. Zhang et al. [10] proposed in NODDI
to represent it with a spherical Watson distribution of sticks. The appropriate
model for representing each compartment, however, remains an open question.

The solution may lie in considering a more detailed model of the tissue mi-
crostructure that gives rise to the diffusion attenuation. Particularly, it is likely
that the observed non-monoexponential decay arises from both large scale and
small scale intra-voxel heterogeneity (see Fig.1). In [9], Yablonskiy et al. pro-
posed a statistical distribution model of the apparent diffusion coefficient (ADC)
that intrinsically reflects the presence of heterogeneous micro-structural envi-
ronments in each voxel. They assumed that the DW signal in a voxel can be
described as a sum of signals from a large number of individual spin packets,
each of them undergoing local isotropic Gaussian diffusion described by an ADC
D. Originally mono-directional, this model was extended to the multi-directional
case by estimation of one ADC per direction. This model, however, does not cap-
ture the anisotropic diffusion observed in the brain. It cannot characterize the
restricted diffusion such as occurs in dense WM fascicles. A generalization of [9]
may be achieved by representing each spin packet with a full diffusion tensor
D. This, however, is analytically challenging because it implies the integration
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of a matrix-variate distribution of probability defined over the set of symmetric
positive-definite (SPD) matrices. Basser et al. [2] proposed a normal distribution
for symmetric matrices that is however not restricted to SPD matrices.

In contrast, a natural distribution for SPD matrices is the matrix-variate
Gamma distribution, which generalizes the Wishart distribution by allowing a
non-integer number of degrees of freedom. In [5], a mixture of Wishart distribu-
tions with prespecified degree of freedom was used to discretize the manifold of
the fascicle orientation distribution in a spherical deconvolution (SD) approach,
and was shown to successfuly capture the fascicle orientation. SD, however, relies
on the definition of a prespecified convolution kernel that is assumed constant
for all the brain. Therefore, variations of the fascicles microstructure (Fig.1b)
are conflated with variations of the estimated mixing proportions, and SD can-
not provide an indicator of the WM microstructure. Additionally, SD relies on
an acquisition with a single non-zero b-value, and water molecules with very
different restrictions such as water molecules in the extra-cellular space and in
the intra-axonal space cannot be distinguished.

In contrast, a generative model based upon the 3-D generalization of the
approach in [9] together with the acquisition of multiple non-zero b-values will
enable characterization of both the WM structure and microstructure. However,
unlike [5], this requires the identification of the appropriate model complexity,
which is a challenging model order selection problem. In the literature, most
approaches such as the Bayesian Information Criterion (BIC), the F-Test or the
Bayesian Automatic Relevance Determination (ARD) focus on assessing the fit-
ting error of each model while penalizing complex models to avoid overfitting.
However, the choice of a penalization strategy and the trade-off between penal-
ization and quality of fit are rather arbitrary and produce highly variable results.
In contrast, generative models are predictive models, and a natural measure to
identify the appropriate model complexity is the generalization error (GE). It
describes how well a model can predict new data not included in the estima-
tion. Typically, a model not complex enough to represent a dataset will have
a large GE, and so will a too complex model so that it overfits the data. The
GE, however, cannot be computed directly and must be approximated. Leave-
one-out cross-validation provides an estimate with low bias but large variance,
leading to high root mean squared errors [3]. K-fold cross-validation provides
an estimator with lower variance but increased bias. Instead, the .632 bootstrap
approach of [3] has been shown to provide low bias and low variance.

In this work, we propose a statistical distribution model of the diffusion in
which we model the signal arising from each spin-packet with a 3-D diffusion
tensor and the presence of multiple large scale microstructural environments in
each voxel with a mixture of peak-shaped matrix-variate Gamma distribution
of spin-packets. This has analytical solution and enables us to derive a novel
generative model that describes the DIstribution of Anisotropic MicrOstructural
eNvironments with DWI (DIAMOND). Our model is derived from first principles
and allows for the representation of both unrestricted diffusion and multiple
fascicles with heterogeneous orientations, while providing a novel measure of
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heterogeneity of the microstructure. We determine the number of fascicles at
each voxel with a novel model selection framework based upon the minimization
of the generalization error estimated with the bootstrap .632 approach [3,6]. We
evaluate our approach with numerous in-vivo experiments, with cross-testing
and with pathological DW-MRI. Importantly, we show that it may provide a
novel biomarker that reflects the WM microstructure integrity.

2 Theory and Methods

A generative model of the diffusion signal. Following the ADC approach
of [9], we consider that the measured signal can be described by a sum of sig-
nals arising from a large number of individual spin packets within the voxel. In
contrast to [9], we consider that each spin packet undergoes homogeneous 3-D
Gaussian diffusion represented by a diffusion tensor D, whose contribution for
a diffusion gradient gk is : S0 exp

(
−bkgTk Dgk

)
dD. The fraction of spin packets

described by a same D in the voxel is given by a matrix-variate distribution
P (D), leading to the signal generation model :

Sk = S0

∫
D∈S+

3

P (D) exp
(
−bkgTk Dgk

)
dD , (1)

where S+
3 is the set of 3× 3 SPD matrices. If a voxel was composed of exactly a

single homogeneous microstructural environment (ME) characterized by exactly
D0, P (D) could be modeled by a matrix Dirac delta function P (D) = δ(D −
D0) and our model is equivalent to DTI. If it were to contain several exactly
identifiable ME, a mixture of delta functions could be used. However, it is more
realistic to consider that a voxel contains multiple large-scale microstructural
environments (LSME) (Fig. 1), each of them having some degree of heterogeneity.

We consider that a voxel contains N LSMEs and we model the composition of
each LSME j with a matrix-variate Gamma probability distribution Ppj ,Σj (D) of
spin packets. Specifically, a random matrix D ∈ S+

3 has a matrix-variate Gamma
distribution with shape parameters pj > 1 and Σj ∈ S+

3 if it has density:

Ppj ,Σj (D) =
|D|p

j−2

|Σj |p
j

Γ3(pj)
exp(−trace(Σj−1

D)) , (2)

where Γ3 is the 3-variate gamma function and | · | the matrix determinant.
The distribution Ppj ,Σj is a peak-shaped distribution. Its expected value is

Dj
0 = pjΣj and describes here the average diffusivity of the LMSE j. The shape

parameter pj determines the concentration of the distribution, the density (2)
becoming more concentrated about Dj

0 as pj increases. This captures the mi-
crostructural heterogeneity of each LMSE j. We consider that the LSMEs are in
slow exchange by considering P (D) =

∑N
j=0 fjPpj ,Σj (D) where fj ∈ [0, 1] are

the volume fractions of occupancy and sum to one, leading to:

Sk = S0

N∑
j=0

fj

∫
D∈S+

3

Ppj ,Σj (D) exp
(
−bkgTk Dgk

)
dD (3)
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The integrals in the right-hand side of (3) are Laplace transforms of Ppj ,Σj (D),
which have a known analytical expression [4]. This leads to the generative model:

Sk = S0

N∑
j=0

fj exp

(
−pj log

(
1 +

bkg
T
k Dj

0gk
pj

))
(4)

Using the Taylor expansion −p log(1 + u
p

) =
∑∞

l=1
(−1)l

l
ul

pl−1 about u = 0 it follows

that: Sk = S0

∑N
j=0 fj exp

(
−bkgT

k D
j
0gk + 1

2pj

(
bkg

T
k D

j
0gk

)2 − 1
3p2j

(
bkg

T
k D

j
0gk

)3
+ . . .

)
.

It shows that when pj → ∞ for all j, which corresponds to infinitely narrow
Ppj ,Σj (D)’s, our model is equivalent to the multi-tensor model. In contrast, fi-
nite values of pj captures the heterogeneity of each LMSE. Note that the decay
rate decreases as the b-value increases, modeling a non-monoexponential decay.

Model order selection for generative models. We present our novel
model order selection approach based on the minimization of the generalization
error (GE). The model (4) is a generative model that relates input parameters
xk (the diffusion sensitization direction and strength) to output measurements
yk (the diffusion attenuation). Denoting by z = {z1, ..., zn} with zi = (xi, yi)
the set of n training data, by Gz(x) the model whose parameters were estimated
with z, and by z0 = (x0, y0) a new hypothetical data point, the GE conditional
on the observed data is :

Eg|z = Ez0∼F
[
|y0 − Gz(x0)|2

∣∣z] , (5)

where E[.] is the statistical expectation and z0 ∼ F indicates that the expectation
is taken over the new data point that follows some distribution F . To account
for the variability of the observed data points, the unconditional GE can be

defined as the expectation of (5) over all z : Eg = E
zi

iid∼F

{
Eg|z

}
. We propose

to estimate Eg with the .632 bootstrap approach [3]. It counter-balances the

positive bias of the leave-one-out bootstrap estimate ÊBS
g by the negative bias

of the fitting error estimate Êfit
g , by assessing: Ê632

g = 0.368 Êfit
g + 0.632 ÊBS

g .

The 0.632 coefficient comes from that, on average, ÊBS
g uses [1− (1− 1

n )n]n data
point at each bootstrap iteration, which is approximately equal to 0.632 for large
n. We refer to [3] for details of the expressions of Êfit

g and ÊBS
g . As in [6], we first

consider a model with a single compartment and then progressively increase the
model complexity as long as it provides a statistically significant decrease in GE.

Methods. At each voxel, we considered one matrix-variate Gamma distri-
bution with isotropic Diso

0 = diag(3 × 10−3)mm2/s to model the diffusion of un-
restricted water and up to 3 matrix-variate Gamma distributions with tensor
Dj

0 to represent up to three fascicles. The .632 bootstrap model order selection
was performed with B = 30 bootstrap iterations. Similarly to [7], the model pa-
rameters were estimated using a maximum a posteriori approach by considering
a diffusion model with gradually increasing complexity, from the ball-and-stick
model to the full DIAMOND model.

Evaluation of the benefits of DIAMOND with actual MR measurements is
challenging because we cannot rely on any ground truth providing the distribu-
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Fig. 2. (a) Plots of log(Sk/S0). Our model captures the non-monoexponential decay
observed in a region of a single fascicle direction. Note that the plotted data points were
not used for the model estimation. (b) Cross-testing evaluation: difference between the
mean-square prediction error of DIAMOND and MTM (lower is better).

tion of MEs in each voxel. First, we performed an experiment to illustrate that
our model captures the non-monoexponential decay. In vivo imaging was carried
out on a healthy volunteer using a Siemens 3T Trio scanner with a 32 channel
head coil and the following parameters : FOV=220mm, 68 slices, matrix=128×128,

resolution=1.72× 1.7× 2mm3. We focused on imaging the body of the corpus cal-
losum (see Fig.2), a region known to contain a single fascicle orientation. We
measured the diffusion attenuation in both the parallel and perpendicular direc-
tions with respect to the fascicles (Fig.2i), with various b-values from 500 to 5000
by increments of 250. The number of repetition for each b-value was determined
to ensure uniform SNR across b-values, resulting in a total of 548 DW images.
We also imaged a multi-shell (Fig.2ii) with 95 DW-images (5 b=0, 30 b=1000 and

15 images at each of b=1500, 2000, 2500, 3000). The multi-shell HARDI was utilized
to estimate the parameters of our model. We then compared the diffusion decay
predicted by DIAMOND to the actual measured diffusion decay.

To further characterize DIAMOND, we performed a cross-testing analysis.
This procedure consists in repeatedly splitting the set of DW images into a
random estimation set and testing set, estimating the parameters with the for-
mer and evaluating the performance on the latter. This measures the predic-
tion performance and objectively characterizes how well a model captures a
phenomenon. This, however, requires a large number of measurements. We per-
formed a multi-shell acquisition with 395 images (5b = 0 and 15 shells of 26

directions with b ∈ [200, 3000] by increments of 200). We repeated the estimation-
testing process 100 times, using at each iteration 70% of the data for estimation
and 30% for testing. We computing the mean-square prediction error at each
voxel across the iterations. We compared DIAMOND to the multi-tensor model
(MTM), which corresponds to using infinitely narrow distributions (pj =∞).

Finally, a great potential of assessing the distribution of MEs in the brain
is the potential derivation of novel bio-markers that reflect the tissues integrity.
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Fig. 3. TSC patient with CUSP65 imaging. Particularly, it shows that the orientation
of the estimated fascicles (b) and the fractions of occupancy (c) correctly matches the
known anatomy, while only 65 DW-images were acquired.

We imaged a patient with Tuberous Sclerosis Complex (TSC), a genetic disorder
characterized by the presence of benign tumors in the brain called cortical tu-
bers. 65 DW-images were acquired with a CUSP65 (CUbe and SPhere) gradient
encoding set [7], which achieves multiple b-values and directions with short echo
time and high SNR. The data acquisition protocol was approved by the IRB.

3 Results

Fig 2a shows that DIAMOND successfully captures the non-monoexponential
decay observed in the body of the corpus callosum. Fig 2b demonstrates that
the cross-testing error is qualitatively lower with DIAMOND than with MTM.
Quantitatively, a paired t-test on the differences between the testing errors at
each voxel shows that DIAMOND is significantly better than MTM (p < 10−8)
with a mean error decreased by over 8%. Finally, Fig 3 reports DIAMOND
imaging of a TSC patient. It shows decreased concentration parameter pj (i)
and increased fraction of unrestricted diffusion (ii) in the region of the tuber.

4 Discussion

We proposed a generative model motivated by biophysical considerations of the
microstructure that gives rise to the DW signal. Inspired by the approach of [9],
we considered that the signal in a voxel is the sum of the signal arising from a
large number of homogeneous spin packets within each voxel. In contrast to [9],
we considered that each spin packet locally undergoes 3-D Gaussian diffusion
described by a diffusion tensor, capturing the 3-D geometrical structure of the
local restrictions to water diffusion. We formulated the DIAMOND generative
model (4) which describes each large-scale microstructural environment (LSME)
in the voxel with a matrix-variate Gamma distribution of spin packets. The
concentration of each distribution was estimated, providing a novel measure of
the microstructural homogeneity. Interestingly, DIAMOND is equivalent to the
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multi-tensor model when the distributions are infinitely concentrated. Unlike
[5,10], our model does not rely on a convolution kernel with prespecified diffu-
sivity. In contrast to [10], we have considered multiple fascicles per voxel (up to
3). We employed a novel model order selection approach based on the minimiza-
tion of the generalization error. Using moderate b-values ≤ 3000 s/mm2 (unlike
[1]), we showed that both the estimated number of fascicles and fascicle orienta-
tions matches the known anatomy, even with a moderate number of DW images
(Fig 3b). We showed that DIAMOND captures the non-monoexponential decay
(Fig 2a) and better captures the underlying biophysical mechanisms underlying
the DW signal formation compared to the MTM (Fig 2b). Interestingly, DIA-
MOND imaging in a patient with TSC showed that, in the region of the tuber,
the estimated fraction of unrestricted diffusion is increased (Fig 3c.ii). This might
reflect an increased extra-cellular space, the presence of perivascular spaces, or
the presence of giant cells typically observed in TSC brain specimens. Impor-
tantly, we observed a reduction in the concentration parameter for the fascicle
located in the tuber (Fig 3c.i), indicating an increased anisotropic heterogeneity
consistent with the orientation of the fascicle. In contrast, there was no signifi-
cant heterogeneity consistent with unrestricted diffusion. We speculate that this
may reflect heterogeneous myelination or heterogeneous mixture of glial cells as
observed in mice models of TSC. In future work we will compare DIAMOND
to NODDI and CHARMED with cross-testing, and investigate the possibility of
characterizing different types of tubers in TSC. DIAMOND imaging may enable
novel investigations in both normal development and in clinical practice.
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